THE LANGUAGE PASCALNE March 8,

2011
THE LANGUAGE PASCALINE
REPORT VERSION 0.3

Contents
R [010 To U1 1o] o I PP PPRPTR 10
2 Summary of Pascaline extensions t0 PasCal.............cccuuiiimeeiiiiiiiiccee e 13
3 EBNF and syntax used in thiS dOCUMENT............ccuiiiiiiieeei e 19
4 Relationship tO ISO 7L88.......uuiiiiiiiiiiiiiirer e e e e e eeee e mmnr e e e e e eee s 21
4.1 Pascaline as a series Of EXIENSIONS...........vvviiiiiiiiieeeee e 21
4.2 Additional reserved WOFSYMDOIS..........c.uuiiiiiiiiiee e 21
O T O ¢ F- - ol (= g =TT o= T o1 PRSP 21
4.4 Compliance With ISO 7185........covviiiiieiiiiiiiiirerr e e e e e e e e e e e e e eeeeree e eren e nnes 21
4.5 1SO 7185 1EVEI 0 ONLY.....cceiiiiiiiieiiie ettt e e e e e e e e e e e s rmmne e e e e 22
4.6 EXtensions t0 PasCaAliNe............uuuiiiiiiiiiicee it rmmee e nene e 22
4.7 ComplianCe StAEMENL........cccoiiiii it rrrr e e e e e e e e e e e aeaaeaaaeeeaananreennnes 22
4.8 COmMPHANCE SWITCIL.....euiiiiiiiiiiii e enene e eeas 22
4.9 Similarities with the 1ISO 7185 standard doCUMENL.............coeeieiiieeeeeeeeeeeeveeeveieees 23
5 Relationship to the PaseBb SerieS COMPIIEL........c.coviiiiiiiiiiiieeeieeee e 24
6 Language extensiolier PAsCaliNe...........ccuuviiiiiiiiiiieee e 25
6.1 WOIGESYMIDOIS ... ettt e e e e e e n e e e e e e as 25
6.2 SPECIAlI SYMDIOIS. ...t 25
5.3 COMITEBNLS. ...ttt ettt st e e e e e et et e bb e e e e s ammnsseeeeeeenbbaeeeeaeeees 25
0 o 1= 01T = SRR 25
TR T - o = (PSR 26
6.6 NUMEIIC CONSLANTS......uuiiiiiieeeiiiiiiiieeeieeie e e e e e e e e e s eeennnseeeeeeeeeeeesssannsseeesamnnseeeeeaaeeens 27
I A 0 1 = 1| A= o] =11 [0 4 L 28
6.8 Boolean iNteger OPEratiONS.uuuuuuuiriiiiiirnereeeeaeeaaeeaaeeeeetteaesimaaeeennnennnne o n——- 28
6.9 View and OUL PAramMELELSuueiieiiiiieieeeceeite e et e e e it e et et e e e st e e e e e snensees 30
6.10 Extended Case StAlEMENLS.........uuiiiiie ettt e e e e e e e e e meee e e e e e e e e e nnee e 32
6.11 Variant reCOrd CASE FANQES.uuuurrrerriiiriiiirinnnreeaaaeaaaaaaaaaaeatteetsimaaenennnnnnnnnannnan——- 34

March 6,

THE LANGUAGE PASCALNE

2011

6.12 Array type shorthand..............oooiiiiii e 36
B.13 CONLAINET AITAYS.....cceeiieeiieeiiee et ee e ceee e s s rmmmr e e e e e e e e e eeeeaeeeeaeessaneesaassasseeaaaeens 36
6.14 Parameterized Variables...........oooeiiieeiiieiieeeee e s 40
6.15 Extended write/writeln State€mMeNLS..........oooiiiii i 42
6.16 Extended read/readln StAtEMENLS..........uuviiiiiiiiiicccee e 46
6.17 TYPE CONVEIMEIS/IESIIICIAIS.oieiiiieeeeee e e et e e s e e e e e e e e e amneas 58
I S b (=T 1Y o [T PP PP PPPEPPPPR PPN 60
6.19 Extendel file procedures and fUNCLIONS...........uuuuiiiiiire e eeees e 61
6.20 Added program header standard bindings............ccovvvvviiccecen 1 2
6.21 Redeclaration of forwarded procedures and fuNCLONS...............covvvieeeiieiiieeiiiee e, 73
6.22 Anonymous fUNCLION reSULL..........oooiiiii e 73
6.23 Extended FUNCHON FESUIIS.......ciiiiiiiiiiiitieeetiiie e cness e e e e e e e s nnbeeeennees 75
6.24 HAlt PrOCEAUIE.eiiiiiiie i reer et ree e e e e e e e e s s s ssnsanesssrseneeeeeeeseeens d O
6.25 Overloading of procedures and fUNCHONS............uuueuiiiiccceeeeeiieeeieeeeeeeeeeeeeeeeeeseeneeean d 1
6.26 Operator OVEIHOAAS.ccoo i e e 79
6.27 Static procedures and fUNCHOMNS..........ooiiiiiiiiiii e e 82
6.28 Relaxation Of decClaration OFAEE............uuuiiiiiiiiiier e rree 83
6.29 EXCeption NANAIiNG........c.euiiiiiiiiee et rmmne e 83
6.30 ASSEIT PrOCEUULE.....cii i ittt e reet e e e e e e e e e ettt e e e e s emameeeeeeeeaannnne 87
6.31 EXtENTEd rANQGE TYPES.... ..ot e s rme e e e e e e nn e 88
6.32 EXteNded real LY PeS. . ..o ettt a e e e e rmnne e 90
6.33 Real Limit DetermMiN@tiOnL.........ccuuiiiiiiiiiiiieeeiiiee e e e e e e e cnenesee e e e e e e e e e e s nnnsrreeennnnes 91
6.34 Character limit determinatiQml.............ccooeeiiiiiiieee e e ee e 91
6.35 MatriX MAtNEMALICS.......evvviieeiiiiiiiiiiiiirrre e e e e e e e e e e e e e eere e e s e e e e e eees 91
T TG (0] 1= 11 EREEEURR PRSI 96
6.37 IMOTUIBITEY. ...ttt et e et e e e e e e e e e ens bbb r e e e e e e e e e e aannnnes a8

6.37.1 Definition vs. implementation Modules..............ccoo i it 102

T I © Y= 4 ¢ T [P PPRE 103

6.37.3 Pamllel ModUIES..........ccooiiiiiiiie 105

6.37.4 MONITOr SIGN@IING. .. ceiiieiiiiiiitiii et eeer e e e e e e e e s semreeeeeas 108
LT 1S O o =T g T P EEPRR 115
IR 1 I O 1= 11T PP PPPP T PPPPPP 117

THE LANGUAGE PASCALNE March 8,

2011

6.39.1 StatiC ODJECIS.. ... 119
6.39.2 DYNamIiC ODJECES 119
6.39.3 ClasSES @S PArAMEIEIS.......cceiiiiiiiiie et eeeeee e ee e e e e e s e e e e e e e s e e e s s emmmr e e e e e e e e eeesaeeeeeeseeesrenes 121
6.39.4 ClasS PAraMELEIScceiiieiiie e e et ettt e e e e s rmmme e e e e e e e e e s ammne e e 121
6.39.5 INNEIIANCE. ..o e rmmne e 125
6.39.6 OVErrides fOr ODJECLS......uuiiiiiiiiiiiii e eere s 127
6.39.7 Self refErENCING .. .ciii i 128
6.398 Constructors and AESIIUCLOLS..........ccoiiuriiieiiiermiiii e 132
6.39.9 Operator overloads iN CIASSES.u i eeer e 133
6.39.10 Derivation VS. COMPOSITION.ctiiiieiiiiiiiititieeesireeeeeeeeee s s s s enenrseereeeeeeeesaannne 135
6.39.11 Parallel CIASSES.........ccoiiiiiiiieiieee et 136

A ANNEX A: COllECTEA SYNTAX.....iiiiiie e e i ee ettt mrne e e e e eeeeaaaeeaaeeeaaeeesanansnnnns 145
B Annex B: Standard @XCEPLIONS.iiiieieeeiiie s s imeee e eeeeeeeeeeeeveeeaeeeerres e s s e e eaaeeaaeeaeaeaeeaesenanes 155
C Annex C: Undefined program parameter binding.............oevveiiiiicce e 159
D ANNEX D: CRAraCler SEIS......uueeiiiiiiiiiiiireeeii ettt e e e e e e e s e ees b e 161
D.1 1SO 88591 Character Set ENCOUINGS.........uuviiiiiieeiiiiimeee et e e smeee e 161
D.2 ISO 10646 Character Set ENCOINGS.........ccouviiiiiiiieeeiiieee e 161
D.3 UNIcOode teXt fil@ 1/O.......coiuiiiie ettt 161
D.4 Use of different CharacCter SELS...........uuiiiiiiiiiiiereriiiiie e e 162

E ANNEX E: CharaCter @SCAPES.uuiiieiiiiiiiiitieeettit ettt e e e e e s et eeessse e e e e e e e e e s s e e s eeereees 163
F Annex F: Overview of standard libraries and modularity...........ccccvveiiiieeceeeeeeeiiiciiiieeen. 169
F.1 BasiC Language SUPPQLL........ccooiiiiiie e mmee e e e e e e e aaeeaaeeaeaeeeeeeanannes 169
N O R~ o 2 OO P P PTPPP PP PP 169
Nt 2 T o 169

F.2 Advanced User I/O and Presentation Management................cccoeeeevvvvvinnvnnnninnnnnnnns 169
N R \\F- U 11 o o F TSP P PP PP 171

March 6,

THE LANGUAGE PASCALNE

2011
F.3 Advanced deVICHDIAIES...........couiiiiiiiiiiii ettt 172
F.3.L SOUN....ciiiiiiiiiet ettt emmr e e e e e e e et e e e s et e e e e e e e e e 172
F.3.2 NEIWOIK ...ttt smme e 172
FLd ClASSES. .. ittt ettt e e e e e e e e a e 172
F.5 Library procedure and function NOtatiON.............ceeieiiiiiiicmmnniiiiieee e eeeee e 172
G Annex G: System ServiCes LiDIany........ccuuuuiiiiiiii i 173
G.1 Filenames and Pathis...........ccuuiiiiiiiieeeic e 173
G.2 Predefined PathS........cooiiiiiiiiii e 174
G.3 TIME AN DALE......ciiiiiiieiiiiiee ettt 174
G.4 DIreCLOrY SHIUCIUIES.......cciii e aeeesaaaeaeas 176
G.5 File Attributes and PermiSSIONS.........cccuuuiiiiiiiii et 177
G.6 ENVIFONMENT SHINQGS .. .cciiiiiiiii ettt rree e e e eeeeeaaeaaaaeaaaeeasssnnasnsnnnes 177
G.7 Executing Other PrOgramS...........uuiiiiiieiiiiimee ettt ee e e e e s s s smmme s ee e e e e e e e aanee 178
G.8 EITOr REUIM COUE.....ciiiiiiiiiiittee ittt e e et e e eeer e e e e e eeeeas 179
G.9 Creating or RemoVving PathS...........oooiiiiiiiiiien e 179
G.10 OPLON CRATACTET........uuiiiiiiieeii i eeer et e e ee e e e e e e e s e eeeasneeeeees 179
G.11 Path CRAraCler.........uiieiiiiii e e n e 179
L B o To 1o PP ST PP PPPPPPPPIN 179
G.13 INtErNAtIONALIZALION..uiiiiiiiie e e e r e e 183
G114 o= o) 0] PP 185
G.15 Functions and procedures iN SEIVICES..........uuuuriiiieeiiecceeeeeeesiiiiieeeeaeeeessmmeeeeeaanans 187
o Y a1 o 1oy o TS 1 o T T o = o/ 195
[0 O] 1Y/ =T o103 PP PP PP PP UPPRPN 195
[T2 Vo o £SO PP P UPPPP 195
o TG TR oo 1 g F= L S] T PP 195
L PR = 1o o 11 o PP 197
H.5 String CONtAINET CIASSES.ciiuiiiiieiiiiii ettt ee e 197

THE LANGUAGE PASCALNE March 8,

2011

o T ST o =T o] (o o =SSP 199
H.7 Procedues and funCtionS iN StHNGS.......c.uuvriiiiiieeeiiice e rmmme e 200
Annex |: Extended mathematiCS lDrany...........oeevvieiiiiimne e 213
1.1 FUNCHIONS. ...t et srm e e e e s e e e 213
1.2 Further tranCeNdentalS...........coouiiiiiiiiiiee e eeeee e 214
1.3 HYPEIMDOICS ...t 214
1.4 Special floating POINE VAIUBS.........oovviiiiiieeieeeee e 215
1.5 NBN FUNCHIONS ...t r e e e e e e e s e s mnea e e e e e eeeas 215
1.6 1TV 18] od 1 T0] o PSSP 215
1.7 Exceptions in the Math lIDrany............iiiiie e ee e 215
1.8 Functions, procedures and constants in the math library.............ccccvvieeeiiiieenneeenn. 216
Annex J: Terminal Interface LiDrary..........oooiiiiiiioeeiece e 221
J.1 ISO 7185 Pascal Compatible MOGE............covviiiiiiiiiieei e 221
J.2 BasiC CUrsor POSITIONING..........ccuriiiiiiiieeieaee et smmme e e e e e e nmmee s 221
J.3 AULOMALIC MOUE.......uiiiiiiiii et eee e e e e e e e e e e s annns e e e e e eeas 222
B 1 I Vo o 11 o PR SPRRR PR 222
YR T S Tox o] |] o T PP P PP PP PPPPPPRRN 222
ST ©7o] (o] £ PP PO PP PPPP 222
J.7 ATIIDULES .. e et e e et emme e e e e e e 223
J.8 Multiple Surface BUEING...........uuiiiiiiiiiiieeei e ee e 223
IR I Yo AV T g [ot=To I [o] o 11) USSR 224
J.10 EVENt CAllDACKS. ...t 227
10 I R I 1= £ TP PP PPN 229
J.12 THE Frame@ TIMEI......ueiiieiiiiiii e eeete ettt eme e e e et e e st e e e e e e s 230
10 G T 1Y (o TU =TT PPP PPN 230
S 1)1 1 o] < PSPPSR 231
J.A5 FUNCHON KEYS. ...ttt eent et e et e e smmee e e e e 231

March 6,

THE LANGUAGE PASCALNE

2011
JJA6 Automat i ¢ fAhal.do.. . Mo.d.e...ee 231
O IO A B 11 € =To! AT 1 L= S PO P PP PUPPPPPRPPPPRN 232
TR T 110101 £ SO PP PP PPPPPPPPPPPPPN 232
J.LO MELATIES. ... e e e e 232
J.20 REMOIEISPIAY. ... eeeeeeeeeiiiiiite ettt e et eeee et e e e e e e e e e s ememr e e e e e e e e e e nnen 233
J.21 Terminal ODJECES. ...t 233
J.22 EXCEPUIONS.eeitieeeeeee e et e e ettt e e e e e e et e e e e e e e r e e e e e e e e e e e ane 237
J.23 Procedures, functions and methods in terminal..............ccooviiecnniiiiii e 238
J.24 Events and Callbacks In terminal.............ccoeviiiiimmiiiiici e 246
K Annex K: Graphical Interface Library..............cccooiiiiieeeiics e 253
Kl Terminal MOGEL.......cooi ittt eemmr e e e e e e e 253
K.2 Graphics COOMdINALES.........cooiiiiiiiii e s e e e e e e e e e e e aeereraeene s e e as 253
K.3 Character DIAWING........cuuiieeiiiiiiiiiiieeesiieeeeeee e e e e s s eeeeseseee e e e e e e s s aansbsne e e enensseeeeeeens 253
K4 String SizesS and KeIMINQG........ooouiiiiiiiiiee et rmmme e e e e e ameeas 255
K5 JUSHIFICALION.....eeiieiiieiie ettt et e e rme e e e e e e e e e 255
(O G = (=t £ PO OO P PPPPPPPPPPPPN 255
S 1= 1 o 3SR 255
(RS T 7o] (0] £ F OO PP PPP PP 255
K. Drawing MOUEScoiiiiiiiiiiiiie ettt eeet et e e e e e e e e e e e e s emmee e e e e e e e annne 256
K.10 Drawing GraphiCSuueeiiiiieeiiiieiieeessi e e e re e e e e e e e e e e s e ennsneeees 256
K.11 10 18] =P PRPESPT 257
K.12 Predefin@d PICIUMES ... 257
K.13 1ot o] |11 o R TP P P OPPPPP 258
K.14 L0470 o1 o PSP 258
K.15 Mouse GraphiCal POSItION..........c..uviiiiiiiieiiees e eeeee e 258
K.16 LN 110 01 1o o F PP PP PPUPPPTPPPPRPN 258
K.17 Copy between DUELSiiiieeeeeeeeeee e e 259

THE LANGUAGE PASCALNE March 8,

2011

K.18 €01 £ PP PP PUPPRPPPPPPRP 259
K.19 MEEATIES ... 259
K.20 =T 14101 (= T0 1] o] = N 2RSSR 259
K.21 [D]=Te FoT = 11 (0] o OO PSP PP PPPPPRTPPPPR 259
K.22 EVENE CAlIDACKS. ... e 262
K.23 Graphical Terminal ObJECES.......uuuuiiiiiici v rrer s 262
K.24 EXCEPLIONS. ..ottt as 267
K.25 Procedues and functions in graphiCs..........uuveeeiiiiiiimeeri e 269
K.26 Events and Callbacks In graphiCs............ccco e 280
Annex L: Windows Management LiDrary.......cccoooeoeiiiiiiiiieveeeeeeeeeeeeeeeevvvevvveeee e 281
I A S (o] (T g N o 1T = [(o = PP 281
L2 WINAOW MOUGES ..ottt reee ettt e ner e e e s 281
L.3 BUfEred MOGE.......eeiiiiiiiii et et e e e e e et rnenss e e e eeeeas 281
L4 UNDUEIred MOGE........cooiiiiiiiiei ittt ettt eemme e e e e e 282
L.5 DefactO tranSParEICY........uuuieeeeeiiiiiiieeesitiieeeeeeeeeasssnstssannsssseseeeeeeeseesaansnsssenanssseeees 283
L.6 Delayed WINAOW DiISPIAY.........uuuuriiiieeiiiiieeeisiiiiiie et e e mes e e e e e e s ninnnaeeas 283
L.7 WINAOW FIaIMES... ..ottt rmmee et e e e e e mnee s 283
L8 SCIOI BAIS....ciiiiiiiiieeite it ecee ettt ekt e ner e 283
L. MUIIPIE WINOGOWS ...t rmmee st m e e e e e e e e e n e e 284
L.10 Parent/Child WINOOWS..........coiiiiiiieiii ettt mema e e e eemmne e 284
L.11 Moving and Sizing WINGOWS.........cccuureriiiiiieee i e e ssieiieeee e e e e e e s smmme e s s s snnnaneeeeeeaeeeens 285
0 A @ (o (=] 11 oo F PP PP PPPPPPPPRP 285
L.13 Class WIiNdoW HandliNg...........cooiiiiiioiiieeie et emee e 286
L.14 Parallel WINAOWS...........cooiiiiiiiiiiiieeiicc e rmme e 286
00t I T /=T T 1 OO PPN 287
L.16 Setting MENU ACHIVE.c.cuueiiie it eiee ettt e e eenre e e e e 288
L.17 Setting MENU SEALES........ccoe i i e e e e e e e e e e e e e e aeees s aas 288

March 6,

THE LANGUAGE PASCALNE

2011
L.18 Standard MENUS.........coiiuiiiiiiiiiii ettt rme e e e 288
L.19 MeENU SUDIISHING. ...ttt e e e e rmmne e 289
L.20 Advanced WINAOWING..........uueuuuiiiiiiiiiiiimmneeeeeeeeeeeeseeeseeeee e e s sesesssss s sss s s s s s e s s e e s smmmeeeees 290
R R = o TR 290
L.22 EVENt CAlIDACKSccci i 293
2 B V1Y T o To [0 YA @] 1= 1 293
L.24 EXCEPLONS. ...ciiiiiiiietee ettt e et ettt e e e e e ammme e e e et e e e e e e e e ammne e e e e e as 301
L.25 Procedures and FUNCLIONS IN WINAOMSuuiiiiiiiiieieateeeeees it e e e e e s smme e e e 303
L.26 Events and Callbacks IN WINAOWS..........cuviiiiiiiiiieeeec e 310
M ANNeX M: WIdget LIDIraryi........oovveeiiiiiieies e e 313
M.1 Tiles, Layers and LOOKS.........coooiiiiiiii ettt nnne e e e e e e e e e e e aaeaaeaeaeeeaannnrees 313
M.2 Background colors and placement...........c.oovvviiiiiieemiiii e 313
R T S 1 L= S PSSP 314
M.4 Logical Widget IdeNTIfIErS.........ccoiiiiiiiiiiii et ean 314
M.5 Killing, Selecting, Enabling and Getting Text to and from Widgets.............cccccee... 314
M.6 Resizing and repositioning @ WIdGeL..........c.uuviiiiiiiieeee et 315
M.7 TYPES OF WILGETS ... eeeeeeiiiieeeee it reei ettt eees e e e e e e e e et eneness e e e e eeeas 315
YIS A o] (o (=Y 1o Vo PP 315
1Y IR T ©7o] 1 {0 £ J PP PP PP PPOPPPPP 315
M.LO COMPONEIEottt e e e e et etba e e e e aaama s e e eaeeeasbba e e eeeeeesbmnneeeeesbanaeeens 319
Y 5 A I T 1 o o PP 320
M.12 EVBINES. ..t e e e e e e e e e e e e e e e e e 322
M.13 EVENLCAIDACKScooiiiiiii e 325
Y YV To o = O =TT o USSR 326
Y T = (o= o 1[0 1= 335
M.16 Procedures and functions in WIdQELS..........c.uuvieiiiiiieeeee et 336
M.17 Events and Callbacks IN WIAQELS.uuuuuumiiiimmre s eeeer s 356

THE LANGUAGE PASCALNE March 8,

2011

N ANNEX N: SOUNT LIDIAINY . ..cciiiieiiiiiee et e e emmr e e e e 359
AN R R o £ S PP TEP TP PPP PP 359
N.2 Channels and INStrUMENTS...........ocviiiiiiiiieeri e 361
N.3 VOIUME. ..ot ee et e e e e e e s me e r e e e e e e e e aaaae 367
N.4 Time and the SEQUENCEL...........coei i i e e rene e e e e e e e e e e e e e e eaeeeeeeeeeneeaes 367

NN BRI = 1 =T ot SO E PP PPPP 368
N.B PItCh CRANGES......oiiiiiiiiiie e errr e e e e s enenr e e e e e e e e e 369
N.7 PrereCorded MIDL.........cooouiiiiiiiiii et rme e 369
N.8 WaAVETOIM FlES......coiiiiiiii et e e e e e 369
N.9 SYNthESIZEr ODJECIS.....coiiiiiieeeee e e 370
N.10 WaVvefOrm ODJECES.......uuiiiiiiiiiiirree e eeee e 371
N.11 EXCEPLIONS. ..ttt rmee e e e e 372
N.12 Functions and Procedures in SOUNG............ocooiiiiiieanen e eesree e 372
O Annex O: Networking LiDrary.........coooooiiiiii i rrer e e e e e e e e e e enenes 379
(O 20 R (ot =7 o] 1 o] o TP O PO PP PP PPPPPPPPPPPN 379
0.2 Functions and Procedures in NEIWOIK.............euviiiiiiiieaceei e 380

March 6,

2011 THE LANGUAGE PASCALNE

1 Introduction
"Standards are great. Everyone should have one of their-odwron.

Pascalings a formal statement of a language that was created over the p@88do 2008 in a series

of extensiongo ISO 7185 Pascal. The natfitascalinevaschoserboth toshow that the language is
designed to be %100 compatiblh the original language, and to continue the langltages c a | 6 s
tribute toBlaisePascalThe Pascaline beirfg a s ccaldulatsr, Pasdiae the language isThe

machine Pascal built", or the "Machine that runs Pascal".

In 2008, there are several defacto standards for an extended Pascal, and one official one, the ISO
10206 standard. | have been dissatisfied with these exestiagsiongor the simple reason that
instead of extending Pascal, they are nadia to redesigns of the languagegooddefinition of what

I mean by redesign would be the introductiora ééaturethat is designed to replace or duplicate a
construct of original Pasl. In particular, the addition of the ability tmin pointer addresses to any
variable and perform "type escapes" at will remat@ stroke all of the type securiiklaus Wirth
designed into Pascal.

At the same time, | wanted Pascalin@t¢bievea level of completeness that thaguage never
achievedn its original form. My goal was not to creas instructionalanguagebutacomplete and
practical implementation thabuld address current problems in computing without fuekegnsions
or special support packages.

To design Pascaline | have enumerated a set of goals for the language design:

I To be completely upward and downwaaipatible with ISO 718Pascal.

1 To be a"logical extension" of original Pascal. That is, to extend Rasingthe same
working theories and means as the original language, and posksment that does not
interoperate completely with the original language.

i To provide a reasonablipgrade to the language capabilttyatcanbe implemented usingn
existing standar compiler withminor effort compared to the original implementation of the
compiler.

1 To implement only features that could be inmpénted efficiently usingxising computing
hardware.

Pascalinavas designed in a series of steps starting in 1993. Foffestcine,one or more proposals

were made. Then, the proposals weveluateda winnerchosenandatest implementation in the

compiler was made. Then, any adjustments required by the experience of actual use were performed.
Every elemenin Pascaline is backed by a real implementation thefficient and tested.

As for most modern languagesetmajor themef Pascaline is for extending tleguage via
libraries, objects and code reuse. Pascaline will, and shobkhl&beitself" by alloving user written
extensiongo such a point that the major thrust of development with the languagd bexdme that
of developindibraries of functions to cover new areas in computer applications.

This very ability to extend the language also formsltlasis of a new problem standard
implementation that, although it has existed frtbmtime Pascalvasoriginally designedn the 1970s,
hasbecome ever more pressing. That isdbénition of standard libraries and platforms. Towards this
end, thePasaline standardasin the standard for most bf o d daggdages, is divided into tihase

March 6,

THE LANGUAGE PASCALNE 2011

standard and a "platform”, consisting of a series of librarieh#ratlecommon 1/0O and support
problems in a machine and system independent way.

Thesdibrariesappearhere asannexs. There is also a seriesafnexs covering issues such as
character handling, striregcapesindother'recommended practices" for Pascaline. The result should
greatly aid the abilityo write nontrivial Pascaline programs that draly portable across machines,
systems and implementations.

The second, but no less important theme in Pasc@iparallel language execution. Pascaline is a
thoroughly parallel language, and completes the idea that strong type security is a furldamenta
building block to parallel language implementation. Indeed, Pascaline now exists as one of the only
languages that offers parallel execution security in a language, instead of being added in as a library
with security left to the user.

As | haveofferedin the past for Pascal, | extend the offer now, that | evillluate Pascaline
implementations for conformance to the Pascaline standardatterwhatthe purposeof that
implementation, public or private, profit aonprofit. | only make the conditiortisat my access tile
implementatiorbereasonablehat the authors provide me with a listawine)esthat are comlied

with, and that an option exists in the ileymentation teerforce strict corpliancewith Pascaline
regardless of any othextensionghat might be presemiver and above Pascaline. This last is the same
requirement thathelSO 7185Pascal standard states.

This authorfurther respectfully requests that the name "Pascaline" be appligtb an

implementation that has been foundtanply with the language spécation here,and by the tests |
provide freeof charge or restrictiorizurther, unlike the ISO 7185 standard, | ask that no exceptions be
allowed forthelanguage (ISO 7185 5.1). A language may well glgrvith part of thisspecificdion,

and be called a Pascal, or some other name. lashihatit notbecalled "Pascaline” unless it can
process the full languagaside fron the annexesvithout exception.

Scott A. Moore
July, 2008

March 6,

THE LANGUAGE PASCALNE 2011

2 Summary of Pascaline extensions to Pascal

Pascablefined a program as a series of nested blocks, one inside the otheroSthmsic block was

the program block, which could contain any nested seripgog&dureandfunction blocks. Each

block can contain a series of declaratioostaining labels, catants, types, variables, procedures and
functions.Eachblock contains the code that executesaigerithmscontained in the block.

Theblocksof Pascal define a closed collection of these declarations witlieaface that consists of a
parameter listln Pascaline terminology, this is'@p" interface, as the block communicates with the
outside of the block via anterface at the "top" of the block:

Parameter
List

Block

(procedure
or function)

In Pascaline,&h block can also interfadaformally, with declarations in theurroundingolock. This
is referred to in Pascaline terminology as the "side" interface:

Surrounding Block

Constants
Block —t Variable declarations
(Mg?ies)m ———————® Procedures
é

Each block can import declaratiofiem the surrounding block.

Pascaknvisioneda program as a tower of blocks resting one atop the otherpatsdigmis a good
one, but views the program asnonolithic whole. Therovisionof fixed types without ta ability to
extend them witlthange Bo contributes to the model of a program created as a static structure of
code.

Pascaline's main thrust is to add extensibility to Pascal, and tiiaéby greatlyaugmentinghe
methods to create side blocks. Pascaline views progiamseries afdoining tiles:

March 6,

2011 THE LANGUAGE PASCALNE

Constants

Variable declarations

¢ r—
Block 7S ® Block
— ¢ >—

Procedures

é

In Pascaline, the program block is such an adjoiblogk, andaddsseverabtherblock types that
have this ability to export their declarations diretthother blocksThe primary of these is the
module, which has all the powersagprogramblock, but adds the ability to specify both code that
executes whethe program starts, and code that executes when the program ehdswhy, modules
appeaias "service blocksivhose point is to provide constants, typesjables, procedures and
functions to the program, along with a method hiotbet up such items as well as shut them down.

Theprogramand module blocks form a group exéing the same thread of exéon for aprogram.
Another module is the process, which defines a new threexkafitionasidefrom the main program.
Process modules cannot directly acqasgiram or module blocks, but the two can communicate via a
monitoror channeblock, whichautomaticallimplementghe multitasking primitives needed to
coordinate suchn exchange. A share block gives a way to defomstantstypes,proceduresind
functions that are usable by any task without the overhead of multitask coordination.

Pascalinealsodefinesa new level of block thasianintermediatébetween ao-called"global” block

such as a program, module, monitdrannelgetc. Those blocks amgatic, with variables that are

allocated for the duration of the prograhhis is a naturaloutermosblock, since any program

ultimatelyis rooted in suclprogram constructs. The class block fits between the level of global blocks
andprocedure and function blocks. A class block has the ability to share its declarations via the "side",
but also can haviés variablescreateddynamically or as part of the local variables in a bld€elrther,
classedavethe ability to be extended to any lev&hy new class has thability to be based on a
previously defined class, amol have that class accepted as compatifiie the base class.

Becauselasseglefine both declarations such as constants and types thatdnallecation, as well as
variables that ddhe class must be instantiated either as part of the variable data, oeféeeace.

Any number of instances of a class may eagstociatedvith such references. The instance of a class
is called an object, and ittlhe set of the datassociateavith a class. The class contathe

declaration of the format of the object it creates, and ithis a "classr "kind" for all of the objects
created using it.

Because class defines both a series of constants, types, variables, apdogisdures and functions

that can operate on those declarations, which are kastvnethods", An objectforms an instance of

a module. Classes complete the idea of "object orientation” which dictates that data exists as paired
with the procedures or functiotisat form its methodsieeded to manipulatkat data. Because classes
that inherit from eacbtheralso havereferenceshatarecompatible classes can extend each other to
any number of levels tonplement program concepts.

As a dynamic corollary to a module, classes also can have a separate thread of execution as a thread
class, and perform as askingcommunications block an atonor liaisonclass.

March 6,

THE LANGUAGE PASCALNE 2011

To allow the static idea of parameter lists in Pascal to be exteRdschalinemplementshe
"overload"concept. Procedures, functions and methods can'fgnonps" under the same name that
aredifferentiated by kindtypeandnumbersuchthatcalls to such procedures and functions are sent to
the instance thdtas the correct interface to operate on tHauilt in expression operators can be
overloaded, thus completing a full circle of data edusion.

The concept oéxtendibilityis further enhancebly the ability to overridexisting procedures,
functions and methods. New modules and classes can ovbigigecvious meaning of them, and also
extend them by performing newperationsand callirg the original definitions.

Pascalindhas"container"types for arrays that do not specify an exact gibhese types can be used to
form a template to create such arrafa runtimedetermined size at runtime. This allows procedures
and functions to acge arbitrarily sized arrays to any dimension, and allows such arrays to be
dynamicallycreated asariables angbointer types as well.

Thecommoncaseof an integer indexed array can be specified by a short fehioh also underscores
the idea of contaimaypes.

A |line comment uses a single character, A!'o0, tha

Pascaline introduces the break character, or'bbthidentifiersandnunbers. This aids readability for
long identifiers and numbers.

Gotolabels are freed from the restriction that they must appearmabers, and can assume the same
form as an identifier. Goto labels ba#taintheir status as an interprocedure deep nested branching,
but also allow for itermodular branching via a proceduwr function call.

Pascaline implements the method of structured exception handhiagdbedeepnested returns. This
allows code to be written that delivers exceptionsigher level code without needing knowledge of
thesurroundingcode. This furtheenhancegxtendibility, andallows for complete replacement of
Afgot oos.

Constant expressions can be used wherever constaresused in Pascal. This makes it possible to
use formulas for thesmnstantsnstead of precalculated numbers.

Extended radixeallow direct specification of hexadecimal, octal or binary constants.

Booleanoperations on integers are permitted, and a new operator, "xor", is implemented for both
boolean and integer operands.

For procedugs, functions and methods, two nparameter "rades" are implemented, theew and

out modes. Theview modeis identical to value parametesemanticsexcept that thparameters
protectedrom all modification. This makes certain compiler optimizations possithleout mode is
identical tovar mode, but flags to the compiler that the parameter will be used only to pass out results.

Case statements now haveedsie clause, andanges of case constants aresgus.
Case variant declarations can also use ranges of case constants.

Write/writeln can specify left justified fields, and a special madewsthe output of right padded

strings in their natural length.

March 6,

2011 THE LANGUAGE PASCALNE

Read/readIn can specify fields on read variables, and can specify literal strings to be matched to the
input. A special mode allows thegut of right padded strings in their natural length.

A newdeclaratiorexists fixed, which can be useahywherea variablecan,but cannotbe modified.
This allows the compile time specification of fixed tabksjameliorateshe need to create blocks of
assignments at the start of a program.

Pascalinentroduces a limited typeonversiofrestriction operation to convdrsetween scalar types.
This relieves the need to produce special handlingpiovertenumeratedypesto integer. It also
introduces the ability to directlgpecify the precision needed within integer expressions, instead of
alwayspromotingsuchoperationdo the full size of integer. This allows mag#icient numeric
processing on small word size processoiarbitraryword length proessors.

Pascalinestandardizesa series of procedures and functions for files, sudiiraing to external file

names, opening and closing a series of filgxingwithin files, finding the length of a file, uptiag
existing files, and apperiag to the end of such files, checking the existence of a file, and deleting and
changing the name of a file.

A few new standard header parameters are introduced, including an erroraligbgr print)
output, and a command line file input.

The strict order of declarations from Pascaklaxedin Pascalinelabel, const, type, var and fixed
declarations can occur in any order. This aids imibdular structure of Pascaline.

When a forwarded procedure, function or methpdears as thectualdeclarationthe parametetfist
can be repeated. It is checked for congruevitethe original. This allows such declarations to be
created by cut and pastmdis more readable than the original method of having the actual
declaraibnsfar from their forwarded declarations.

Procedures and functions can be declared as,sianhonrecursive.This allows the creation of more
efficient code on some processors.

Asserts are implemented, allowing the incorporation of runtime cHiecksdebeing debugged that
can be removed without modifying the source.

Pascaline allows "subrange" types to be created that are larger than thePascahtange of an
integer fmaxint..maxint). This allows an implementatido implementtypes that utilte double
moreprecision while taking longer feerform them, so called "extended range" types. It also
implements a set of predefined types that give an implementation defirefdussigned and signed
extended range types.

Besides standard reals, theza type that is smaller than the standard real, and a type that is larger
than the standard real. There are new constants that give the maximum values in each real type.

There is a predefined constant for the maxin character value in an impientation.
Matrix mathematics is supported with one dimensional and two dimensional arrays.

A way to specify a function result that obeys the rule of single entry/single exit with the result formed
at the end. This is also required for operator overloads.

March 6,

THE LANGUAGE PASCALNE 2011

Function esults are extended to allow most types, including structured, to be returned as a result.

Properties specify a program object that appears as a variable, but has its read and write actions
completely program defined. Properties are also a building bbtoaéianced multitasking structures.

Besidegheextensiongo the base Pascal language, Pascaline defines acgionfalextension
modules that define the Pascaline "platform". Thesnsdto thefactthatthe set of support calls for
animplementation make as mudifference to portability for a program as the base language does.

March 6,

THE LANGUAGE PASCALNE 2011

3 EBNF and syntax used in this document

For the purpose of describing syntax elements of Pascaline, the EBNF or ExBecladNaur
Formatas used in the ISO 7185 standard is used. The syntax that appears here consists of the syntax
elements from the ISO 7185 standasinodified for Pascaline use.

name = syntaxiescription .
Describes the syntaxpansiorof the syntax element by name of fimal’, which isterminated by ".".
alb
Either construct a aronstructob may appear, but not both.
{a}
Construct a is repeated 0 or more times.
[a]
Construct a is repeated 0 or 1 times (it is optional).
‘abc’
The characters "abc" appear literally.
(ab)
The elements a and b are grouped together.

The syntax expansions that appear in this document mirror thebyamaenein the ISO 7185
document. If a syntax element by name matches a hame usedlgttiment, and is different from
the one contaiedthere, thent representa Pascalinextensiorto ISO 7185 Pascal, and replaces the
original syntax defintion.

Note the ISO 7185 use of ">" or "alternate" is not used here, belPasgsalineloesnot usethe "level
1" extension®f ISO 7185. The syntaxf the level lextensionsvas removed.

AnnexA contains a full syntax for Pascaline.

March 6,

THE LANGUAGE PASCALNE 2011

4 Relationship to ISO 7185

4.1 Pascaline as a series of extensions

The Pascaline standard accepts the entire language defined in the standard defined in ISO 7185 such

that the set of features defined by Pascaline qualiexeshsionsi n d er | S CExténsi®b. 3. 2 A

4.2 Additional reserved word-symbols

As dlowedin ISO 71853.2fiextension, the following additionaspellings of identifiers are
prohibited because of their use as wsythbols in the Pascaline standard:

forward module uses private external
view fixed process monitor share
class is xor overload override
reference joins static inherited self
virtual try except extends on
result operator start thread atom
property channel liaison out

These woresymbols are all new worglymbols defined by Pascaline. The fact that certain identifiers
are prohibitedn Pascamay cause ISO 7185 compliant programs to fail to compile for this reason. To
use a Pascaline implementation for such programs, one of two methods are used:

1. The |1 SO 7185 compliance switch is enabled (se
2. The idetifiers in the program that overlap the above list are changed.

4.3 Character escapes

AnnexEAn Char acter Escapeso, iif implemented by the tez¢
character strings in an ISO 7188plementationAlthough ISO 7185 does not spigdihe character set

or contents of strings in a complying program, it is reasonable for a given program to assume that all

visible characters are treated equally.

I f the program dbo,nttah en se stchaep ec hsaergaucet newibbéi nt r oduct i
treated differently than other characters. To use a Pascaline implemethtatimnplements Annex E
for such programs, one of threeethods are used:

1. The 1 SO 7185 compliance switch is enabled (se
2. A switch thatenables or disables character escapes is set to disable.
3. Al | insWawcedhiof characteww.strings are changed

4.4 Compliance with ISO 7185

| SO 7185 5.2 AProcessorso allows an i mplementat.i
by a lig of the requirements for which it does not complgscaline specifically does not allow Buc
exceptions. A processorfascaline compliant only if it has the following characteristics:

1. The complete requirements of ISO 7185 are followed, witBrogption.
2. The complete requirements of Pascaline, in this document, are followed without exception.

March 6,

2011 THE LANGUAGE PASCALNE

That is, the Alist of requi r5e e nitpsr ismetherscoornspdl i ed w
allowed as a starting point for Pascaline, nor carrieddohinto the language Pascaline.

45 1SO 7185 level O only

Pascaline is compliant with Al evel 00 Pascal only
5 AComplianceodo). Conformant arrays are nont specif
under Pascaline. However, such conformant arrays could well be implementegktenaiorno

Pascaline.

4.6 Extensions to Pascaline

Extensiongo Pascaline are changes to language features in this standard that do not cause a program
complying with this standard to fail to compile, interpret, run or otherwise function with the exception
that one or more additional spellings of symbo&s/rhe resrved to the processorhat is, additional
reserved worgsymbols may be defined.

An example of amxtensiorthat does not comply with this standard is a modal change such as
redefining the functionality of trhpyingiprograhndtooper at o
fail to function.

4.7 Compliance statement

Complying processors with Pascaline shall issue the statement:

<This processor> complies with the requirements of Pascaline version X.X [and the annexes A, B,
ceé|]

Where:
<This processor> Is thename of the complying processor
XX Is the version number of the Pascaline specification complied with.

[and the annexes A, B, C..] Is an optional list of the annexes also compiled with]

There is no minimum requirement for the number of annexes convgliedThe processor may

comply with any number from zero to all of them. In some cases, it may be inappropriate for a
particular implementation to have compliance with a particular arloexexampé, the graphical

display annex Kn conjunction with a sstem that has no graphical displayst as compliance with

the basic Pascaline standard implies that a program will or will not run, the presence or abasence of
annex a program relies on may cause it to compile and run, or fail to do so.

4.8 Compliance switch

If the processor complying with this standard contaiktensiongdefined in4.6 AExtensiongo
Pascalinedo), it shall ¢ o n tliree with tha followinig tharacteristics: ¢ o mp | i

On:

1. Causes the Pascaline compliance statement to be igsd@d@ o mp | i ance st at ement
2. Causes any restriction on spelliofidentifiers to be removed (no additional reserved words
beyond those of Pascaline

THE LANGUAGE PASCALNE March 8,

2011
3. Causes angxtensiorto the Pascaline standard to be removed.
Off:
1. Causes the Pascaline compliance statement to be remby@dC o mp | i ance st at emen
2. Enablesanyextensiondo the Pascaline standard.
3. Does not cause any program complying with the Pascaline standard to fail to compile,

interpret, run or otherwise fation, with the exception of restriction of spelling of identifiers
(additional reserved words).

Note that if the processor contaiggensionghat do not comply with the Pascaline definition of
extensiong4.6fExtensions o Pascal i ne d)hydefiftiennprt o ceosnpd ry wii It lh, t F
switch requirement above.

49 Similarities with the ISO 7185 standard document

In general much of the form and manner of the original ISO gfd@flardlocument was followed in

this document. However, in one case there is a distinct difference. The original ISO 7185 document
does notlistinguishbetween errors at compile time anduwattime, which sometimes overlap. In this
standard, all runtime errors are represented as exceptions, and a list of exceptions appears as an annex.

The wuse of A ecoushanyatimes irhis docordeatorhat is, a buitt or standard
operation ostatement is explained in terms of other statements in ISO 7185 Pascal or Pascaline. This
creates a concrete and exaxplanatiorof standard actions.

March 6,

2011 THE LANGUAGE PASCALNE

5 Relationship to the Pascal-P6 series compiler

In 1972 A project was begun to create a portable demibiat accepted and processed a subset of the
original Jensen and Wirth Pascal standard. This compiler went through several versions, and ended as
the PascaP4 compiler. In its final iteration, it still a subset compiler, with several features of J&W le

out. This compiler was extensively documented by both the Zurich originatoisand i Pa s ¢ a |

| mpl ement at i on:S. RefmbertoPand .C. Danielsl.e r 0 |

In 1982, the ISO 7185 standard was issued, and this was accompanied by the ISO 7185 cdmpiler in
model Implementation of Standard Pascal [Welsh], and by a BSI (British Standards Institute) test suite
designed to fully test existing compilers.

In 2009 a project was begun to improve the original Zurich P&scampiler to accept and process

the 1SO7185 Pascal standar@his resulted in Pase®&5 which replaces the model implementatitin

was accompanied by an extensive document and by a new test suite designed to replace the BSI test
suite, which is no longer available.

In 2011 a project was begtmimplement the Pascaline language as an increment to the-P&scal
compiler,andcreate a new test suite to verify the result, and also a new working document for the
compiler.

The PascaP6 implementation provides a freely available, public domain pkaimplementation of
Pascaline whose test suite is also freely available. This can be used as an example for a new Pascaline
implementation, as a starting point for such an implementation, and/or as a soastg fofrtsuch an
implementation, or simplgs a reasonable implementation in its own right.

PascalP6 and its associated tests provide the proving system for the Pascaline language. It is expected
that when the PaseRI6 implementation is complete and tested, that this standard will reach a 1.0
version.

March 6,

THE LANGUAGE PASCALNE 2011

6 Language extensions for Pascaline
6.1 Word-symbols
word-symbol ='and' | 'array’ | 'begin’ | 'case’ | 'const' | 'di@’ || 'downto’ | 'else’ | 'end’ | file' | for' |
‘function' | 'goto’ | 'if' | 'in" | 'label' | 'mod’ | 'nil' | 'not’ | 'of"||'or 6 Xpacked@'| |
‘procedure’ program’ | ‘record’ | 'repeat’ | 'set’ | 'then' | 'to’ | ‘type’ | 'until’ | 'var' | ‘while" |
‘with' | 'forward' | ‘module’ | 'uses' | 'private’ | 'external’ | 'view' | 'fixed' | '‘process’ |
‘monitor’ | 'share’ |class' | 'is' | 'overload' | 'override' | 'reference | 'joinatif'qt
'inherited’ | 'self' yirtual' | 'try' | 'except’ | 'extends’ qom& esul t@oyt @oper af
Oproperty6 | .6channel & | Ol iaisonbo

Notes:

1. The directives "external" anddifward' in ISO 7185 Pascare promatd toword-symbok in
Pascaline.

2. The functionofthed i r ecti ve fiexternal 6 in Pascaline is
ISO 7185 Pascal.

6.2 Special symbols
Specia‘lsymbol = I+l |_l | I*I | I/I | I=I | I{l I>l | I[l | I]l I.‘ | I’l | I:I | I;l I I/\I | I(I | I)I | I<>I | l<:l | I>:I | I::l | I..I | '(.I
|')'|'@" | woresymbol .

Note that the alt er nanereopbgonadiy|B®dHd859Paséal, andain 6.) 6, an
optional in Pascaline.

6.3 Comments

The character 06!6 introduces a ALine Commento. A
are ignored. This allows a comment form that is short, and automatically terminated by the end of line:

i A simple program
!

program p;
begin
writeln(o6Hell o, worlddéd) ! print to console
end.
Notes:

1. The 6! 6 character must appear amysymbokeen Pascal i
2. Any other comment characters within a |ine co

6.4 Identifiers

Identifiersin Pascaline are identical 8O 7185Pascal, with the addition of the breztkaracter'_'. An
identifier can start with any of 'a’..'z' or ' ', and contiwitd 'a’..'z'; 'and '0'.."9". As in ISO 7185

Pascal, identifiers are not casmsitive.

March 6,
2011

THE LANGUAGE PASCALNE
idertifier = letter | '_' { letter | digit | '_" }.
Example identifiers:

one_more_time

_last_time

6.5 Labels

Labels,usedfor goto purposes, can use the same format as identifiers @adealine. The original
"apparent value" numeric labelsI&0O 7185Pascabreaccepteds well.

label = digitsequence | identifier .
Example label:
program p;
label exit;
{ declarations }
begin
goto exit
{ statements to be skipped }
exit:

end.

March 6,

THE LANGUAGE PASCALNE 2011

6.6 Numeric constants

unsignednteger= decimalinteger | hexnteger | octainteger | binaryinteger .
decimalinteger = digitsequence .

hexinteger = '$' hexdigit-sequence .

octatinteger = '&' octadigit-sequence .

binaryinteger = '%' binardigit-sequence .

digit-sequence= digit { digit } .

hexdigit-sequence = hedligit { hex-digit }

octatdigit-sequence = octaligit { octal-digit }

binary-digit-sequence = octaligit { binary-digit }
digit='0"|"1"|'2"|'3"|'4"|'5'|'6"|'7"| '8"''9'
hexdigit="'0"|"1"|'2"|'3"|'4"|'5'|'6"|'7"|'8"|'9"|'a"|'b"|'c"|'d"|'e"|'f|"
octakdigit="0"|'1"|'2"|'3"|'4"|'5"'|'6"|'7"|"_".

binarydigit="'0"]"1"|"_".

Both standard integer and real specificationseaalable. In addition, thréadix specifier” formats
are available:

$1234- Specifies hexadecimal form@iase 16)
&1234 - Specifies octal formgbase 8)
%21010- Specifies binary formgbase 2)

Each alternative format is specifiedth a"“radix introduction” characterTheseformatscan be
specified anywhere the Padoalconstruct unsignedonstanis specified.

Pascaline accepts a "break character" within numeric constants. Thafratehcan be used
anywhere within a number:

123_456_789

It cannotbeusedas the first character of a number, which would make idemtifier.
The meaning of the number is considengthout the breakcharactersThe number:
123

is equivalent to:

123

March 6,

2011 THE LANGUAGE PASCALNE

Breakcharacterganbeusedin any radix. They arasefulfor grouping digits sthat the result is more
readable:

12 334 222 { marked in thousands }
$5566_1212 { marked in 16 bit sections }

6.7 Constant expressions

constant = [sign] constatérm { addingoperator constasierm } .
constarterm= constanfactor { multiplying-operator constasfactor } .

constardfactor = '(* constant ")’ | 'not' constdattor | charactestring | constarAtentifier | unsigned
integer .

multiplying-operator ="' | '/* | 'div' | 'mod' | 'and" .
addingoperato ='+'| *' | 'or' | 'xor" .

Whenever a constant appears in Pascal, Pascaline is abkefia constanexpressionConstant
expressiorexpressiontave a syntaxhit is similar, but not iderttél to standard expressions in Pascal.
Constant expressigicanonly operateon other constantsr constant expressipand cannot include
variables.

Note:
1. Theoperatorxor is definedin6.8i Bool ean i nt.eger operationsao

6.8 Boolean integer operations

expression = simpiexpression [relationalperator simplexpression] .
simpleexpression = [sign] term { addiraperator term }
term = factor { multiplyingoperator factor } .

factor = variableaccess | unsignembnstant | functiowlesignator | typ&entifier '(* expression)" | set
constructor | (" expression *)' | 'not’ factor .

multiplying-operator = ™' | '/* | 'div' | 'nab | 'and’ .
addingoperator = '+' }"| 'or' | 'xor" .

Besidegheuse ofand, or andnot on Booleandn Pascal, Pascaline allows thee ofand, or and
not with integer operands. The result is the bitwise 'and,r 6 or o6énot 6of the bits i

Pagaline defines a new operatanr, which has the sangrecaelenceasand. It gives the bitwise
exclusive or of integers. It can alsoumed on boolean types, but in that case is equivalent to the
operation a <> b.

Boolean operations on negative valaes not defined, and may be treated as errors, caught at either
compile time or run time, by the implementation.

March 6,

THE LANGUAGE PASCALNE 2011

Theboolean integeor operation is equivalent to:

function bor(a, b: integer): integer;
var i, r, p:integer;
begin

if (@<0)or (b < 0) throw(Negativelnteger);
r:=0; { clear result }

p :=1; { set 1st power }

i ;= maxint; { set maximium positive number }

while i<>0 do begin

if odd(a) or odd(b) then r:=r+p;{addinpower}
a:=a div 2;{setnexthbits of operands }
b:=b dv 2

=i div 2; { count bits }

ifi>0 then p:=p*2 { find next power }

end;
bor :=r{return result }

end;

The boolean integeand operation is equivalent to:

function band(a, b: integer): integer ;
var i, r, p:integer,;
begin

if (a < 0) or (b < 0) throw(Negativelnteger);

r:=0; { clear result }

p :=1; { set 1st power }

i ;= maxint; { set maximum positive number }
while i<>0 do begin

if odd(a) and odd(b) then r:=r+p;{addin power}
a:=a div 2;{setnext bits of operands }

b:=b div 2

=i div 2; { count bits }

if i>0 then p:=p*2 { find next power }

end;
band :=r { return result }

end;

March 6,

2011 THE LANGUAGE PASCALNE

The boolean integetor operation is equivalent to:

function bxor(a, b: integer): integer;
var i, r, p:integer;
begin

if (a < 0) or (b < 0) throw(Negativelnteger);

r:=0; { clear result }

p :=1; { set 1st power }

i ;= maxint; { set maximum positive number }
while i<>0 do begin

if odd(a) <> odd(b) then r:=r+p; {add in power}
a:=a div 2;{setnextbits of operands }

b:=b dv 2

=i

i div 2; { count bits }
if i>0 then p:=p*2 { find next power }

end;
bxor :=r { return result }

end;

6.9 View and out parameters

formalparametetist = '(' formalparametesection{ ;' formal-parametessection } ')' .

formalparametessection = valugparametesspecification variableparametespecification| view
parameterspecification| outparametespecification procedural
parametesspecification| functionatparametespecification .

valueparametesspecification = identifietist "' typeidentifier .
variableparametespecification = 'var' identifielist ' typeidentifier .
view-parametesspecification = 'view' identifielist ' typeidentifier .
out-paraneterspecification = 'odtidentifier-list ;' typeidentifier .
procedurajparametespecification = proceduseeading .
functionalparametespecification = functiofheading .

A parameter to a procedure or function has a type and a "nibdéfdicatesthe method of its
passage.

Besideghe Pascal parameter modesvair andvalue, Pascaline adds a modedduced byiew:

March 6,

THE LANGUAGE PASCALNE 2011

program p;
type a= packed array [1..100] of char;
procedure x(view b: a);
begin

{ use, but donét change, b }
end;

begin
end.

view parameters have the same characteristics as value parametees)lantreated identically to

value parameters. Yiew parameter cannot be modified or "threatened" in the procedure or function it
belongs to. The meaning @hreatened" is the same as for indexvariables of ISO 7185 6.8.3.9
andmeans that the parametannot be assigned, used as an indeXan bbop, or passed to another
routine as aar parameter.

view parametergnablethe underlying implementation to create more efficatte in many cases. If
the above example was:

program p;
type a= packed array [1..100] of char;
procedure x(b: a);
begin

{code to use array b }
end;

begin
end.

The code would have to copy the actual paranteter which can be very ineffient for large arrays.
The use of theiew parameter allows the system to treéreet parameter asvar parameter, but allow
any expression tbe passedsavalue parameter would.

An out parameter is functionally identical torar parameter except that it indicates that the

parameter will be used only to return results to the ¢allet that the contents of the variable passed

will not be initialized on entry. This allows the processor to check for accesses to the variable before it
has been assigned.

March 6,

2011 THE LANGUAGE PASCALNE

program p;
type a= packed array [1..100] of char;

procedure x(out b: a);

begin
{ set new contents for the array }
for i:=1 to 100 do b[i]:=i+10
end;
begin
end.

6.10 Extended case statements

casestatement = 'case' cagglex 'of' casdist-element ';' caselist-element}["'] 'end'.
caselist-element= casdlist-statement | cadest-default .

caselist-statemat = caseconstardist ":' statement .

caselist-default = 'else’ statement .

caseconstardist = caseconstantrange{ ',' caseconstarntrange } .

caseconstarfrange= caseconstant ['..' caseonstant | .

caseindex = expression .

A case statement can featureedse clause at the end of all case selectsafgiven case statement:

March 6,

THE LANGUAGE PASCALNE 2011

program p(output);
var y:integer;
begin
{code that sets y }
case y of
1: write('one";
2: write('two")
else write('value unknown")
end

end.

The statement indicated alse will be executed if the case select value dossmatch any of the
values in the case list.

A case select value can appear aange of values:
program X;
var y:integer;
begin
case x of
1: write('one’);
2: write(‘two');
3..5: write('three to five")
end

end.

Is equivalent to

March 6,

2011 THE LANGUAGE PASCALNE

program p;
var y:integer;
begin
{ statements that sety }
case y of
1: write('one";
2: write('two");
3, 4, 5: write('three to five')

end

end.

6.11 Variant record case ranges

The case constants on a variant record specification can appear as ranges:
recordtype = 'record' fieldist 'end" .

field-list = [(fixed-part [;" variaipart] | variardpart) [;']] .

variantpart = ‘case’ variarstelector 'of' variant { ;' variant } .

variant = caseonstardist ":' ‘(" fieldHist *)" .

caseconstardist = caseconstanrange { ', caseonstantrange } .

caseconstanfrange = caseonstant [.. caseonstant | .

March 6,

THE LANGUAGE PASCALNE 2011

program p;
type sr=1.5;
var r. record

i: integer;
case s:sr of

1: (q: integer; b: boolean);
2: (z: real; t: array 10 of integer);
3..5: (0: set of char; j: integer)

end;

begin {programp}
end.

Is equivalent to:
program p;

type sr=1.5;
var r. record

i integer;
case s:sr of

(g: integer; b: boolean);
(z: real; t: array 10 of integer);
4, 5:(o: set of char; j: integer)

1:
2.
3,

end;

begin {programp}
end.

Notes:

1. For each case range, the starting constant must be less than or gwpehiding constant.
2. The ISO 718%ascalequirement that all values of the tagfield be present remains.

March 6,

2011 THE LANGUAGE PASCALNE

6.12 Array type shorthand

arraytype = 'array' [dimensieapecifier] 'of' componestiype .

dimensionspecifier = indexspecifier | rangspecifier .

indexspecifier = '[" indexype { ', indextype } T .

rangespecifier = unsignethteger {',' unsignedhteger } .

Pascalindeatures a special declaration format for the most common case of integer indexed arrays:

ty pe x= packed array 10 of char;
type y = array 20,10 of integer;

are equivalent to:

packed array [1..10] of char;
array [1..20,1..10] of inte ger,

type X
type y

Denotinganarrayindex by size, instead of by an index specification, uskeaent syntax, without
the T'and’]' characters, to make it clear what kiofdarray specification is being used.

6.13 Container arrays

arraytype = 'array' gdimensionspecifier] 'of' componesipe .

The specificatia of only fixed arrays in ISO 718%ascal caused several praatiissuesvith the
language. Pascaline has the concefitantainerarrays”,which are array types specified without
index specifications.

type a= array of integer;

Containerarraysarea "template type" which cannbe usedd directly specify a static variable
without qualification For example:

{incorrect example }

program p;

type a= array of integer;
var b:a;

begin
end.

Would not be correct because tygpdoes not contain enough informatiommelythe size of the
array, to define the static variatide

Thepowerof container arrays is their ability to be bound to a fully defistedic array at a time later
than when the program is compilddis can happeimm threedifferent ways:

March 6,

THE LANGUAGE PASCALNE 2011

1. When a parameter is accepted for a procedure or function.
2. As a resulof the creation of an anonymous array in dynamic storage.
3. By use of a parameterized variable declarattme.14i Par amet eri)zed variabl

It is importantto understand that Pascaline does not specify what are tajledmic arrays”, which is
the ability to resize an array raintime. Pascalinesimply provides the means to create fixed arrays of
any size at runtime and bind to them, or to create genaugteseprocedure®r functionsthat can

bind to any size array at runtime. Thistinctionmay seem to bennecessarbut in practice it
dramatically simplifes implementatioof the corncept.

Container types can have multiple index levels:

type a= array of array of array of boolean;

Container array types are compatible with other containdrfixedarray types that:

1. Have the same base types.
2. Have the same packed/unpacked status.
3. Have the same number of index levels.

Thus, the following types ammpatible:

type a= packed array [1..100] of char;

and

type b= packed array of char;
type a= array [1..10, 1..100] of integer;

and

type b= array of array of integer;

A container array can be used for a procedure or function parameter:

type string = packed array of char;
procedure x(var s: string);

And can use any mode.

As with ISO 7185Pascahkrray parameters, if the parameter is passed by \here, can be
considerable expensssociateavith copying thearrayto privatelocation forthe procedure or
function.

When container arrays are used as parameters, they are simply serving asdradesgisting array.

In the case of variable parameters, the array was crels@dhere in the code and the parameter

simply points to it. In thease of value parameters, the array is created anew in a private location, and
the existingarraycopiedto it. In both cases, the inforti@n needed to complete the telate for the

array exists elsewhere.

March 6,

2011 THE LANGUAGE PASCALNE

Another way to allocate a container arrayoisisenew to allocateit dynamically:
program p;

type ap="a;
a = packed array of char;

var b:ap;
begin

new(b, 10);
b :="hi there '

end.

The call ofnew must specify the size of all indices the same order as timelicesappear in the
declaration

Containerarrays have the interesting propeitgt they are free of index ty. Container arrays are
considered to be compatible with otlaerays(standard or container) that have the same number of
base elements.

This meanghat the followingassignmentare possible:

program p;

type a= packed array [20..120] of char;
b= array of char;

c ="b;

var (g:a;
X: C;

begin
new(x, 100);
XN =0
qg:=x 7
end.
It does not matter what the first or l@sment of the array is. When elemeauts copied from or to a
compatible container, or whercantaineiis usedto referencea standardarray, the elements are

matched up from the first to thest without regard to the exact number of the index usetielfast
exampleg[20] and x[1] refer to the same elemertte equivalent of the above copy operation is:

March 6,

THE LANGUAGE PASCALNE 2011

program p;
type a= packed array [20..120] of char;
b= array of char,
c ="Db;

var (g:a;
X: C;

begin
new(x, 100);
{ x:==0; }
for i:=1 to 100 do x/i] :=q[i+20 -1];
{a=x }
for i:=1 to 100 do q[i+20 -1]:=x"i]
end.
Whena container array is indexed, the method of specifyingdlisesis always the integers 1 to n,

where n is last element of the array. The last elewfeamtontainer array, which happens to also be its
length, can be found by tipeedefined function:

max(a, I);
Where a is the container array, and | is the indexingl |&or example:
program p;

type a= array of array of array of integer,;
b ="a;

var c:b;
i integer;

begin
new(c, 10, 20, 30);
i := max(c, 2)

end.

Finds the second level index lengthbofwhich is 20.

Specifying a level fomax is optional. The function call:

March 6,

2011 THE LANGUAGE PASCALNE

max(a);
is equivalent to:
max(a, 1);

Container arrays make it possible to have a type that represents a string, or packed array of characters
with a starting index of 1:

type string = packed array of char;

This is astandard system definition in Pascaline. In addition, a pointer to a string is also standard:

type pstring = /string;

6.14 Parameterized Variables

Although containers cannot be directly used as the type of a variable, or part of a variable, they can be
used fa the type of a parameterized variable declaration:

variabledeclaration = identifietist[6 (6 expr es s i o:htypddenbter6 expressi on
variabledeclaratioppart = ['var' variableleclaration '{ variable-declaration ;' }] .

program p;

type z= array of integer,;

procedure q(Vv: 2);

var a(max(v)): array of integer;
i integer;
begin
for i:=1 to max(v) do a[i:=v[i]+1
end;
begin
end.

Variables which are declared using containers use a parameterized form that takes one or more
expressions on the left side, which are usddlfil theindicesthat appear in the type of the variable
on the right side.

The parameter expressions mustriieger.

March 6,

THE LANGUAGE PASCALNE 2011

Each expression will be used to match an index in the type. If the type is formed from a nested
declaration, théndicesare processed from the outermost declaration to innermost. If multiple
dimension arrays exist, thedicesappear from major tminor.

Every index in the type must be matched. If there are more or fewer index expressions that there are
indicesin the type, it is an error.

The expression used for an index parameter is not limited. Variables, parameters and functions can be
used, btall of the elements used must be fully defined.

The evaluation of the index parametisrperformecdbefore the code in the block for whitte
variable is declared is executdtheindicesdo not vary during the execution of the declaring block.
This meas the following variant of the above code would function correctly:

program p;
type z= array of integer,
procedure q(I: integer; V: 2);

var a(l). array of integer;

i integer;
begin
| =5;
for i:=1 to | do ali]:=V[i]+1
end;
var r(10): z;
i integer,
begin
for i:=1 to 10 do rfi] :=i+10;
q(10,r)
end.

If a parameterized variable statement contains only constant parameters, the compiler may treat the
variable as equivalent to a fidéype with the same parameserhis allows a container type to be used
as a fAtemplated type to create static variabl es:

March 6,

2011 THE LANGUAGE PASCALNE

program p;
type z= array of integer;

var a(10): z; ! an array of 10 integers
b(20): z; ! an array of 20 integers

begin
end.

If the parameterized variabkxpressiortontains local variables, it is an error, since such variables are,
by definition, undefined at the start of the block. Note that this does not apply to parameters, which are
initialized externally to the procedure or function that containpénameterized variable statement.

Parameterized variables allow the specification of fixed types from abstract types. This allows both the
use of types for general classes of types, as well as moving the sizes of arrays out of type descriptions.

6.15 Extended write/writeln statements

Pascalineextendghe meaning of field width parameters in ISO 7185 6.9.3idctade negative or
zero field widths. The appearance of a negative \adadield width has the same effect as the
absolute value of the field widthxceptthat the resulting character translation is set left justified
within its field.i.e., the spaces that are specified to pad each output format to the fieldneidtitput
after the contents of the field, not before.

program p(output);
var i:int eger,;
begin

write(i: -10)
end.

Would outputhe integei in 10 spaes at least, with any padditgthe right side of the number.

The behavior of a fielded write for integers is equivalent to:

March 6,

THE LANGUAGE PASCALNE 2011

program p(output) ;
procedure Writelnteger (var f: text; i: integer; f | : integer);

var c:integer;
p: integer;

begin
if fl <O then begin !leftjustified
I determine the number of required characters
c:=0;

if i<0 then c:=c+1;!countsign
p = maxint; ! set maximum power

I count digits
while p>0 do
begin if abs(i) >= p then c:=c+l;p:=p div. 10 end;
write(f, i:1); ! output minimum format
if f>c then wr i t e (f , |6c)!@omplete justification
end else write(f, i:f [); ! output regular format
end;
begin
Writelnteger (output, 20, -10)
end.

For real values in the floating point format, there is no change for left justified formatting. This occurs
because there are no blanks used to justify auglmber. The precision of the fraction is simply
extended to fill the field. Thus:

program p(output);
var r:real;
begin

write(r: - 20)
end.

Is equivalent to:

March 6,

2011 THE LANGUAGE PASCALNE

program p(output);
var r:real;
begin

write(r:20)
end.

There is no difference between the left justified format for a floating point representation, but there is
also no error.

For a real value output in fixed point format:
program p(output);
var r:real;
begin
write(r: - 20:5)
end.

The equivalent codis:

March 6,

THE LANGUAGE PASCALNE 2011

program p(output);

procedure WriteRealFixed(var f:text; r:real; f | : integer :
fr: integer);

var c:integer;
p:real ;

begin
if fl <O then begin !leftjustified
I determine the number of required characters

c=2 ;! minimum field includes 60. 6
if r <0 then c:=c+1;!countsign
p = 10.0; ! set minimum for extra digits
' calculate digits beyond 60. 6
while p <= abs(r) do begin c := ¢c+1; p := p*10 end;
write(f, i:c:fr); ! output minimum format
if f>c then wr i te(f, -06c+f6))fl complete justification
end else write(f, i:f); ! output regular format
end;
begin
WriteRealFixed (output, r, -20,5)
end.

A zero field parameter has practical use only witing type and character type parameters. This is
because integer and real types have minimum output format sizes. An example of use with strings is:

program p(output);
var i:integer;
begin

for i = 11 downto O do writeln(ohello thered:

end.

March 6,

2011 THE LANGUAGE PASCALNE

Hello there
Hello ther
Hello the
Hello th
Hello t
Hello
Hello

Hell

Hel

He

H

(blank)

In the code:
program p(output);
procedure WriteSpaces(s: integer);
begin
writedgo s)
end;
begin
WriteSpaces(10)
end.

Serves to output a given numberspices, from 0 to N

6.16 Extended read/readln statements

read/readln statements argymmetrical with theiwrite/writeln counterparts for text files. Variable
parameters can accept field specifications. String variables can be read. Constant string parameters can
appearto be matched to input.

The net effect of symmetricadad/readln operations is to allow files generateglwrite/writeln
statements to also be readriepd/readln statements.

A standard ISO 7185 Pascal string variable or Pascaline string variable can appeadasadin
parameter:

March 6,

THE LANGUAGE PASCALNE 2011

program p(input) ;
var s: packed array 10 of char;
begin
rea d(s);
end.
Theequivalent code is
program p(input) ;
var s: packed array 10 of char;
procedure ReadString(var f:text; var s: string);
var i:integer;
begin
for i:=1 to max(s) do read(f , s[i]);
end;
begin
ReadString(input , s)
end.

If the end ofline is encountered, it is read as a space and the read operation continues. If end of file is
encountered, it is an error.

For fielded read parameters, an integer value field, which can be any expression, appears after the read
parameter:

March 6,

2011 THE LANGUAGE PASCALNE

program p;

var f: text;
i integer;

begin
read(f, i:10);
end.

The fielded read requires the input integer to be complete within the specified number of characters,
disregarding any leading or trailing blanks.

The equivalent code to read an integer is:

March 6,

THE LANGUAGE PASCALNE 2011

program p;
var f: text;
i integer;
procedure Readinteger(var f:text; var i integer; fl: integer);
var s:integer;
function NextChar: char;
begin

{ if past the field, terminate with space }
if fl=0 then Next Char = 6 6
else NextChar ;=

end;
procedure GetChar;
begin

get(f);
fl := 1l -1

end;
begin

s = +1; { set sign }
{ skip leading spaces }
while (Next Char =anddénotd goin(f) do GetChar;
if not (Next Char i n-d,0+6006 .060. &red])
throw(InvalidintegerFormat);
if Next Char thend &dChar
else if Next Chardé thené begin GetChar(f); s := -1 end;
if not (Next Char i n [6hén. thd® OlhvalidintegerFormat);
i :=0; { clear initial value }
while (Next Char i n [6 000begird 9 payse digit}

i := i*10+ord(NextChar) -ord(6006); { add in new digit }
GetChar

end;
{ make sure the rest of the field is spaces }
while fl>0do begin

if Next Char <then 6thraw(Invalidin tegerFormat);

March 6,

2011 THE LANGUAGE PASCALNE

GetChar

end
end;
begin

ReadInteger(f, i, 10)
end.
Reading a character with a field is similar
program p;

var f:text;
c: char;

begin
read(f, c :10);
end.

The equivalent code is:

March 6,
2011

THE LANGUAGE PASCALNE
program p;

var f: text;
c: char;

procedure ReadChar(var f: text; var c: char; fl: integer);
begin

read(f, c); ! get the character
I make suret he rest of the field is spaces
while fl>0 do begin

if f~ <> thend throw(FieldNotBlank);

get(f);
fl == fl -1

end
end;
begin
ReadChar(f, c, 10)

end.

When reading a string, the default field is equivalent to the number of characters in the string. If a field
is present, and is greater than the number of characters in the stringetb&imthis expected to

appear with a number of leading blanks. To specify a number of trailing blanks, a negative field is
specified.

In both cases, if the field is smaller than the number of characters in the string, only that number of
characters will b read. There is no initialization implied for characters in the string past the number of
characters in the field.

If the field is 0, the space padded string mode is entered. In this mode, all characters that are present in
the input before any end of &ror end of file are read into the string, then the remaining characters in

the string are set to blanks. In this mode it is an error if there are more characters present before the
end of line or end of file than there are available in the string.

March 6,

2011 THE LANGUAGE PASCALNE

program p;

var f: text;
s: packed array [1..20] of char;

begin
read(f, s:10);
end.

The equivalent code is:

March 6,

THE LANGUAGE PASCALNE 2011

program p;

var f: text;
s: packed array [1..20] of char;

procedure ReadString(var f:text; var s: string; fl: integer);

var [integer; { net length of string }
i: integer;

procedure SkipSpaces(c: integer);
begin
while ¢>0 do begin
if f~ <> thend throw(FieldNotBlank);
get();
c=c -1
end
end;
begin
if fl=0 then begin {padded mode }

i :=1; { set start of string }
while not eoln(f) and not eof(f) do begin

if i>max(s) do throw(InputExceedsString);
read(s[i]);

end;
{ clear the rest of the string to blanks }

while i< max(s) do s [i] = 6 6
end else begin
I := max(s); { find net length of string }
if abs(fl) <l then |:=fl;
{ skip leading spaces }
if - fl>max(s) then SkipSpaces(max(s)+fl);
for i:=1tol do read(f, s[i]); { get stri ng characters }

{ skip trailing spaces }
if fl > max(s) then SkipSpaces(max(s) -fl)

end

March 6,

2011 THE LANGUAGE PASCALNE

end;
begin

ReadsString(f, s, 10)
end.

For real variables, the results are similar to that of integer:
program p;

var f:text;
r: real;

begin
read(f, r:10);
end.

The equivalent code is:

March 6,

THE LANGUAGE PASCALNE 2011

program p;

var f: text;
r: real;

procedure ReadReal(var f:text; var r:real; fl: integer);
var i:integer;

{ find power of ten efficiently }

function pwrten(e: integer): real,

var t: real; { accumulator }
p: real; { current power }

begin
p := 1.0e+1; { set 1st power }
t:= 1.0; { initalize result }
repeat
if odd(e) then t:=t*p;{ifbitset, add this power }
e = e div 2; { index next bit }
p:= sqgr(p) { find next power }

until e=0;
pwrten :=t

end;

function NextChar: char;

begin
{ if past the field, terminate with space }
if fl=0 then Next Char := 6 6
else NextChar ;=

end;

procedure GetChar;

begin

get(f);

fl .= A1l -1
end;

March 6,

2011 THE LANGUAGE PASCALNE

procedure Readlnteger(var i: integer);
var s:integer;
begin

s = +1; { set sign }
if not (Next Char in-§,6+806.6. ared])

throw(InvalidReal Format);
if Next Char thené &d&Char
else if Next Chard thend begin GetChar(f); s := -1 end,;

if not (Next Char in [6thén. thdwlavalipReal Format);
i :=0; { clear initial value }
while (Next Char i n [6 606begid 9 parsé digit}

i ;= i*10+ord(NextChar) -ord(6006); { add in new digit }
GetChar

end
end;
begin {ReadReal}

{ skip leading spaces }

while (Next Char =ando(fl 60) do GetChar;
ReadInteger(i); { read integer section }

r:=i; { convert integer to real }

if NextChar in [.,'e,'E] then begin { itsareal}

if NextChar="" then begin {decimal point}

GetChar; { skip "." }

if not (NextChar in [0..'97) then
throw(InvalidRealFormat’);

p := 1.0; { initialize power }

while NextChar in [0 '.'9] do begin { parse digits }

p :=p/10.0; { find next scale }
{ add and scale new digit }
r:=r+(p * (ord(NextChar) - ord('0Y));
GetChar { next }
end

end;
if NextChar in [e','E] then begin {exponent}

THE LANGUAGE PASCALNE March 8,

2011
GetChar; { skip 'e' }
if not (NextCharin[0Q'..'9", '+ -7) then
throw(InvalidRealFormat);
ReadInteger(i); { get exponent }
{ find with exponent }
if i<0 then r:=r/pwrten(i) else r:=r*pwrten(i)
end
end;
{ make sure the rest of the field is spaces }
while fl>0 do begin
if Next Char <then othraw(InvalidReal Format);
GetChar
end
end;
begin
ReadRealf(f, r, 10)
end.
Constant strings are allowed to appear in the read/readin parameter list:
program p;
var f:text;
i integer;
begin
read(f, 6éThe answer is: o6, a6, ®)resulting in
end.

The effect of such a constant is that each character of the snpatc¢hed to the characters in the
string, in turn, regardless of if the end of line is true. If the character is matched, it is read and thrown
away. If the character is not matched, it is an error.

The following code shows the equivalent of such a match.

March 6, THE LANGUAGE PASCALNE

2011
program p;
var f: text;
i integer;
procedure ReadConstant(var f:text; view s: string);
begin
for i:=1tomax(s) do
if A <>g]i then throw(UnmatchedConstantCharacter);
get(f)
end;
begin
ReadConstant (f, O0The answer is: 0)
end.

6.17 Type converters/restrictors

expression = simplexpression [relationalperator simplexpression | .
simpleexpression = [sign] term { addiraperator term } .
term= factor { multiplying-operator factor } .

factor = variableaccess | unsignembnstant | functiordesignator | typé&entifier '(' expression)" | set
constructor | (" expression *)' | 'not’ factor .

multiplying-operator ="' | '/* | 'div' | 'mod' | 'and" .
addingoperator = '+' }"| 'or' | 'xor" .

Pascal defines the functiemd to convert any scalar or character type to integidefines the
functionchr to convet integer to charactePaschne extends this system to includeumerated types
"type converer":

March 6,

THE LANGUAGE PASCALNE 2011

program p;

type a = (one, two, three);

var X a;
begin

x = a(l);
end.

In the example the result of a(1) is the enumerated type cohst@mntransfer from an integer to an
enumerated type is the only new type conversion defined in Pascaline.

A similar appearing construct is the Atype restr
progra m p;
type a =20..30;
var y:integer;
begin
y = a(y+l);
end.

The assignment := a(y+1)would seem to haveo function.However, the compiler can take thisa
hint that instead of promioig the expression y+1 to the full size of an intetf&t the operation can be
performedn only the precision required for ks within 20..30. This can able more efficient
processing of expressions on some machines.

When a type restrictor appears, the compiler can generate an error for values imi¢chedrealue that
cannot fit in the range of the target type. Type converters and restrictors never simply discard values.

The value within a type restrictor must be assignment compatible with the ggfespin the type
restrictor.

March 6,

2011 THE LANGUAGE PASCALNE

6.18 Fixed types
block= { declaration } ['private' declaration] statemguatrt [;' statemerpart] .

declaration = labefleclaratiorpart | constandefinition-part | typedefinition-part | variable
declaratiorpart |fixeddeclaratiorpart | procedureeclaration ';" | faction-declaration ;" .

fixed-declaratiorpart = ['fixed' fixeddeclaration '{ fixed-declaration ;' }] .
fixed-declaration = identifielist ' typedenoter '=' valugonstructor.
valueconstructor = arrayalueconstructor | recordalueconstrucbr | constant .
arrayvalueconstructor = ‘array' valseonstructor { ',' valueonstructor } ‘'end’ .
recordvalueconstructor = 'record' valemonstructof ',' value-constructor } 'end' .

In additionto declaring variables, Pascaline can declare a pmogomstructhat appears anywhere a
variable can, but is defined completely at compile time:

program p;

fixed a:integer =1;
b: array [1..10] of integer =
array 5,6,8,2,3,5,9,1,12,85 end;
c. record a:integer; b: char end = record 1,'a' end;
d: array [1..5] of packed array [1..5] of char= array

'tooth’,
'trap ',
'same ',
‘fall ',
‘radio’
end;
begin
end.

The declaration of a fixed is similar tosar declaration, but each variablegiven a "value" part that

contains a value construct@t.value constructor is a series of constants or other value constructors
separated by 6,6s. As in the case ofvarablemraact er ar
constant string can be used to specify the valuefiaea character array, and must have the same

number of characters as the definition.

Fixedtypes can be usehywherea variable type can, but a fixed type cannofthesatened" in the
sense of théor variable threat of ISO 7185 6.8.3.9

March 6,

THE LANGUAGE PASCALNE 2011

6.19 Extended file procedures and functions

Pascaline defines several additional functions dealingfikéth Filesthatare not declared as external
via the program header are normallyegi the property that they are anonymous and may be deleted at
the end of theprogram. In Pascaline, such files can also be nameglguisie functiorassign:

program p;
var f:text;
begin

assign(f, 'myfile");
reset(f);

{ statements to use file f}
close(f)
end.

assign takes any string (defined I8O 7185Pascal as a packed array of characters with a starting
index of 1 and any length). The fornwdithefile namecontained in the string is entirely
implementain dependent, but implentations will honor, at minimum, the conventions that:

1. Leading and trailing spaces in the name are ignoredieamolvedf required.
2. Thatthecharacterén the set ['a'..'z', 'A".."Z', '0'..'9", '_" are valid in a filename.
3. The filename must begin with at@eters from the set ['a'..'z', 'A".."Z"," .

1. These are the same conventions as used for identifiers in Pascaline.

2. This is only a subset of implementation defined filename conveniitvesparticuhr Pascaline
implementation mahave its owradditionalrequirementsor theformatting of filenameshat
are a superset of the above conventions

ThePascalinestandardibrary services hasahigher level structuring dilenames that are upward
compatible with the abovenventionsSeeAnnexG.

The existence of a named file implies, but does not requirethibfilie is notdeleted at the end of the
program run. Itdirther implies that applyingeset to a named file will allow its preexisting contents
to be accessed.

As in ISO 718%Pascal, applyingeset or rewrite to a file causethefile to changerom the
"undefined" state to "readbtr reset, and"write" for rewrite. It is an error to applgssign to a file
that is not itheundefinedstate, that is, to rename it while it istiae.

A file must be in the undefined state to hagsign applied to it. The effect of multiplessign
operations applied to the same file while in the undefined state is itself undefined.

To allow the processing of multgfiles by name, the procedwise exists:

March 6,

2011 THE LANGUAGE PASCALNE

program p;

var f:text;
names: array 5of packed array 10 of char= array

O OO O O

end;
i integer;

begin
for i:=1 to 5 do begin
assign(f, namesi]);
{ statements that use file f }
close(f)
end
end.
close causes bond between the file variable and the named file itself to be ao#ehe file state to
be returned back to undefined. In this stateanhaveassign applied again. In this way, a seqaen

of named filecanbe processedclose implies that if the file is anonymous, it is deleted, and that the
file returns to being anonymous unless assigned again.

Because in Pascaline, a named filariplied to persist beyontthe endof a programiit is also implied
that each file that exists in a read or write skeate aclose performed on it automatically either when
theprogramends,or when the file variabléalls out of activation

ISO 7185Pasal defines files as a series of elements which can be examihathifPascalindefines
the standard functioklength to give the number of einents within a file:

program p (output) ;

var f: file of integer;

begin
assign(f, o6myfiled),;
writeln('The length of the file is: ', length(f));
close(f)

end.

The functionlength is equivalent to:

March 6,

THE LANGUAGE PASCALNE 2011

March 6,

2011 THE LANGUAGE PASCALNE

program p(output) ;

type fi: file of integer;

var f:fi;

function length(var f:fi) > Icardinal ;
var |,r,p :integer; ;

begin

[:=0; { clear length }
r:=0; { clear remainder }
{ find remaining elements }

while not eof(f) do begin get(f); r:=r+1 end;
{ rewind and count the total elements }

reset(f);

while not eof(f) do begin get(f); | :=1+1 end;
p:=1 -r; {fin dposition from length I remainder }
{ find original position }

reset(f);

while p>0 do begin get(f);p:=p -1 end;

length := | { return length }

end;

begin

assign(f, o6myfiled);

reset(f);

writeln(oLength of myfile: &6, |l ength(f))
close(f)

end.

Thelength function cannot be applied to a file of type tdacausehelengthof line endings is
implementation defined, so the length of a fé&tis implementation defineds well.

Each element of a Pascal file can be enumerhid®ascaline, the elements diila that is not of type
text are numbered from 1 to n, where n is the last element of the file. The current location within the
file is found withthebuilt in functionlocation:

THE LANGUAGE PASCALNE

program p(output);
var f: file of integer;
begin
writeln('The location in the file is: ', location(f));
end.

The functionlocation is equivalent to:

March 6,
2011

March 6,

2011 THE LANGUAGE PASCALNE

program p;

type fi: file of integer;

var f:fi;

function location (var f:fi) . lcardinal ;
var I, r,p , C integer,;

begin

[:=0; { clear length }
r:=0; { clear remainder }
{ find remaining elements }

while not eof(f) do begin get(f); r:=r+1 end;

{ rewind and count the total elements }

reset(f);

while not eof(f) do begin get(f); | :=1+1 end;
p:=1 -r;{find position from length I remainder }
{ find original position }

reset(f);

¢ := p; { set count from position }
while ¢ >0 do begin get(f); c:=c -1 end;

location := p { return location }
end;
begin
assign(f, oOmyfiled
reset(f);
wr i t elLacaton of myf i | lecatiomd (f))
close(f)
end.

Thecurrentlocation within a file can be set by the built in proceduosition:

March 6,

THE LANGUAGE PASCALNE 2011

program p;
var f: file of integer;
begin
assign(f, o6myfiled),;
reset(f);
position(f, 10)

{ statements to use f}

close(f)

end.

The procedur@osition is equivalent to:

program p;

type fi: file of integer;

var f:fi;

procedure position (var f.fi ;p:integer);
begin

reset(f);
while p>1 do begin get(f);p:=p -1 end

end;
begin
assign(f, o6myfiled);
reset(f);
position(f, 10);
{ statements to use f }
close(f)

end.

position will work with any element from 1 to n+1, where n is tastelemenibf the file.position
allows the loction to be set one beyond the length offtleeso that the file can be extended at the

end.

March 6,

2011 THE LANGUAGE PASCALNE

As withlength, there is no way to apply eithlercation or position to atext file.
It is an error to applposition to an undefined file.

In ISO 7185 Pascalhere is no way to update a preexisting file with new datBascaline the
proceduraipdate can be used instead @write:

program p;
var f: file of integer;
begin

assign(f, 'myfile");
update(f);

{ statements to use f}

end.

The procedur@pdate for integerss equivalent to:

THE LANGUAGE PASCALNE

program p;
type fi: file of integer;
procedure update(var f:fi);

var cpy: fi;
i: integer;

begin
I copy previous contents of file
reset(f);
rewrite(cpy);
while not eof(f) do begin read(f, i); write(cpy, i
I change modes and copy back to original file
rewrite(f);
reset(cpy);
while not eof(cpy) do begin read(cpy ,i);write(fi
end;
var f fi ;
begin

assign(f, 'myfile");
update(f);

| statemen tsto use f
end.

The file thatupdate is applied to must exist.

March 6,
2011

) end;

,i) end

As forrewrite, update places the file in write mode. Howeveipdate doesnotclear the previous
contents of the fileUpdate sets the location within thide at 1, just aseset does. If the common
operation of updating a file at tieed is wanted, the following code does this:

March 6,

2011 THE LANGUAGE PASCALNE

program p;
var f: file of integer;
begin
assign(f, 'myfile";
update(f);
position(f, length(f)+1);
| statements to use f

end.

update only works with nortextfiles. The built in procedurappend performsthe same action as
above, but works with both text and nt@xt files:

program p(output);

var f:text;

begin
assign(f, 'myfile’);
append(f);
writeln(f, 'hi there");

end.

The procedurappend for text files is equivalent to:

THE LANGUAGE PASCALNE

program p;
procedure append(var f: text);

var cpy: text;
c: char;

begin
I copy previous contents of file
reset(f);
rewrite(cpy);

while not eof(f) do begin

if eoln(f) then begin readIn(f); writeln(cpy)
else begin read(f, c); write(cpy, ¢) end

end;

I change modes and copy back to original file
rewrite(f);

reset(cpy);

while not eof(cpy) do begin

if eoln(cpy) then begin readin(cpy); writeln(f)
else begin read(cpy, c); write(f, c) end

end
end;
var f. text ;
begin

assign(f, 'myfile";
append (f);

| statements to use f

end.

The file thatappend is applied to must exist.

March 6,
2011

end

end

To determine if a file bypame exists in the system, the functéxists canbe used:

March 6,

2011 THE LANGUAGE PASCALNE

program p(output);

var f: text;
begin
if exists(O0thidHen | ed)
{ operate on O6thisfiled }

end.

Theexists function takes a variable reference to a Paseatring, and returnaboolean value that is
true if the file exists.

Theexists function can be used tetermine beforehand ifreset will yield an error because of a
nonexistentfile.

To delete a file by name, tlikelete procedure is used:
program p(output);
begin

delete(‘oldfile")

end.

delete accepts a variable reference to a string, and causes the file to be removed from the system. It is
an error if the file does not exist.

To change the name of an existing file, th@nge procedure is used:
program p(outpu t);
begin

change('newname’, 'oldname")

end.

The file with the name of the second parameter is changed to be the first parBotbtparameters
are variable references to strings. It is an éfritie second parameter does not exist in the systed,
aso if the firstpaameterexists before thehange call. It is also an error if any differencesist in

the names besides just their priratipames. Thisule forbids, forexample, the changing of the
location or system parameters of the file gdimechange call.

6.20 Added program header standard bindings

Besides théSO 7185 Pascaéxtfile external bindings dhput andoutput, there are three new
external bindings defined by Pascaline:

March 6,

THE LANGUAGE PASCALNE 2011

error

This file can be used to output error messagegonings to. It may be aliasédoutput by
an implementation. The purpose of #reor file is to providea outputfile that will always go
to the user's console, and cannot be redefisetuted to another display device.

list

This file is used to outg for what is assumed to be printout from any attat¢tzed copy
device. The implementan may alias this file to theutput file if such a device is not
available, or if hard copy is not desired.

command

Thecommand file is a text line or series of tekne that deliver instruction® therunning
program. Most commonly, it carries a single line containingeh®aining text of the
command line that activated the running program, aftecahemanchame itself is discarded.
However, it can contain angistruction lineand can even be directed to be an entire file
containing such commands.

The exact format of the commands and parameters contained in filepdeenentation
dependentf the implementation has no concept of a command lindiléhean beassigned to
another file, or may appear empty.

Since on many systems a command line exists as a line of text in memasgpadof afile
system, it is understood that the implementation will simulseaccess to such a line as a
file, if that is required.

In thePascaline specificatioimplementersare reminded aherequirement®f ISO 71856.10
"Programs" wherein it is an error if a program parametactisd on and cannot complete that action.
This clause of SO 7185Pascal specifically forbidgnoring the program parameters.

Further, in Pascaline it is strongly suggested that the program parametersmglioinmon text files
be connected, or can be causdonnectto externalfiles by bindingto command file namegSee
AnnexC).

6.21 Redeclaration of forwarded procedures and functions

In Pascaline, the parameters of a forwarded procedure or function can be repeat¢dOAALBS

Pascal, the names of the parameters are the same as the pagigalin the forwarded header. The

new names, ifttey happen to be different in the repeated header, are ignored. However, the two
parametetists arecheckedor "congruency" using the same rules as procedure and function

parameters n | SO 7185 6.6. 3. 6. iParameter | ist congruit

Repeating the parametensa forwarded procedure or function both increasesetielocumenting
nature of a program, by keeping the parameters close to the actual body of the procedure or function,
as well as making #asierto createsuch headers, by simple block copy.

6.22 Anonymous function result

Pascaline haan alternate method to indicate a function result;

March 6,

2011 THE LANGUAGE PASCALNE

function-declaration = functioieading ';'directivefunctionidentification ';' functiorblock |
functionheading ;' functiotblock .

function-block = block .
block ={ declaration } ['private’ { declaration }] statemepart [;' statemerpart | .
compoundstatement = 'begin’ statemesgiquenc¢ &6r esul t'éndexpr essi on |
At the end of the main block of a function, a result statement can appear:
program p;
fun ction y(a, b: integer): integer;
begin

result a+b
end;
The result statement is an alternative to the |1$8b7arrangement of assigning the result to the name
of a function that is active. It can only be used in a function, and it can only be tisecad of the
function. Itcanonly givethe result of the enclosing functigim contrast to ISO 718Bascafunction
results).It cannot be used in conjunction with a ISO 7PB&éscahssignment to the name of the

function appearing in either the blookthe function whose result is to be set, nor any nested block.
Thus, the following example is illegal:

{illegal example }

program p;

function y(a, b: integer): integer;
procedure q;

begin

begin
result a+b
end;

But thisexample is legal

March 6,

THE LANGUAGE PASCALNE 2011

program p;
function y(a, b: integer): integer;

function g: integer,

begin
y = a+b;
result 1
end;
begin
a:= g
end;

The assignment to the function resuis legal ing, even thougly is using the result method, because
the functiony is using the ISO 7185 named function result method.

Unnamed function results give a clear way to indicate the function result, that obeys the single
entry/single exit rule with the function result formeicthe exit. They are also required in order to
indicate the result of arperator overload function (Sée26fOperator overloads.

6.23 Extended Function results

Function results can be any type, including structured:

March 6,

2011 THE LANGUAGE PASCALNE

program p;
type a: array 10 of integer;
function y: a,

var z:a;
i: integer;

begin

for i=1 to 10 do Zz[i] :=i+10;

begin
end.

Such extended function results imply greater costs due to the need to copy the structure back to the
caller.

A function result cannot be a file, nor a structure having any part that is a file.
Functionresults can be container arrays, but must be compatible with the result.

The ISO 7185 rule that function s must be assignment compatible with the function result type
remains.

6.24 Halt procedure

A standard Pascaline procedtrat exists:
program p;
begin

if not exi sts(6myfhegihed)

writeln(oneeded file does not existod),;
halt

end
end.

Thehalt procedure causes the program, and all of its threads, to immediately terminate. It is
equivalent to throwing the unspecified global epiion.

The equivalent code for a program block is:
76

THE LANGUAGE PASCALNE March 8,

2011
program p;
label 99;
begin
if not exi st s (6myfoeghe6)
writeln(oneeded file does not existo),;
goto 99
end;
99:
end.

Thehalt procedure will terminate the enclosing program no matter which module it appears in.

6.25 Overloading of procedures and functions

procedureheading = attribute 'procedure’ identifier [forrparametetist].
functionheading= attribute 'function’ identifier [formgbarametetist] ":' resulttype.
attribute = 'overload' | 'static’ | 'virtual' | ‘'override’ 6 o p.er at or 0

Theattributeoverload canbe used to specify that one procedure or fundbams an overload group
with another:

March 6,

2011 THE LANGUAGE PASCALNE

program p;
procedure x(y: integer);
begin

{ statemen ts to operate on parametery }
end;
overload procedure x(c: char);
begin

{ statements to operate on parameter c }
end;

Any number of procedures or functions with the same raande joined thigay into anoverload
group. When the procedure or function is called, the comgé@armines which of the procedures or
functions in the overload grouptis beusedto satisfy the call. Thus, both of these calls are possible
with thedefinitions above:

X(1);
x('c');

The compiler considers three things when determining which procedure or fufctiooverload
group is meant:

1. If the called context is a procedure or function call.
2. The number of parameters.
3. The type compatibility of thparameters.

Overloadgroupsarenot allowedto be ambiguous. There is no "preferencepoiority” involved with
overloads. If two overloads are ambiguous wispecto eachother, then an error will result at the
time ofthe definition of the conflighg overload.

Two callsareambiguouswith each other if they match for procedure/functtatus, have the same
number of parameters, and {erameterarecompatiblebetween lists, using the ISO 7185 definition
of compatibilitya c c or di ng trmenté o thp 6 t fwhesekeithgr pavameter could be
assignment compatible with the other), and also if one parameteaiisvhile the other is a single
character stringrhis means, for example, that having one parameter ofgégleand the other of
type integer, means those parameters are ambiguous with each other.

When parameter lists are compared, the mode of the parameteraor, iteew or value status is
ignored.

It is an error if two parameter lists "converge" with different mo@le® parameter lists are said to
converge at any point in the list if that parametadall parameters to the left of it are found to be
compatible using theules above. An example of an overload declaration that is invalid brutéis:

March 6,

THE LANGUAGE PASCALNE 2011

l'invalid program
program p;
procedure a(i: integer; c: char; b: boolean);
begin
{ statements of first overload of a}
end;
overload procedure af(i: integer; var c: char; b: boolean; r: real);
begin
{ statements of second overload of a }
end;

begin
end.

Eventhoughthetwo parameter lists would be distinct because they diffaumber, the lists are
convergent at parameterand parametar has conflictingmodes, the first bag value, and the
second beingar.

The purpose of the convergence rule isetieve compilers from having to staa#t the parameters in a
procedure or function call before determining which routine of an overload group matches the call.

Overloadgroupsmust be completed within the same declaration block. Diffenectules, classe
procedures and functions cannot adddohotheis overloadgroups.

6.26 Operator overloads

operatordeclaration = operatadentifier operatoch e adi ng -fype].6: 6 resul t
operatoth e adi n g ‘Hormaledpndifrerd formalparametetist | .

operatoi denti fier-0=|] 66606 | 66606|] | 6di vd | 6é&modod

6ind | O6isd | o6:=06

Besides overloading procedures and functions, it is also possible to overload expression operators:

March 6,

2011 THE LANGUAGE PASCALNE

program p;

type string = packed array of integer;
pstring = Astring

operator +(a, b: string): pstring ;
begin

{ code to concatenate strings aand b }
end;
operator :=(a, b: string) ;
begin

{ code to assign string bto a }
end;

begin
end.

Wher e M+ & dlmmwombratwto overload. The following operator overloads are possible:

March 6,

THE LANGUAGE PASCALNE 2011

Program p;

type Xx: record i, r:integerend;

operator +(@:Xx):x ; begin result a end;
operator T(a:X):x ; begin result a end;
operator not (a:x):x ; begin result a end;
operator +(a, b: x): x ; begin result a end;
operator - (a, b: x): x ; begin result a end;
operator *(a, b:x):x ; begin result a end;
operator /(a, b:x):x ; begin result a end;
operator div (&, b:x):x ; begin result a end;
operator mod@a, b:x):x ; begin result a end;
operator and(a, b:x):x ; begin result a end;
operator or(a, b:x):x ; begin result a end;
operator xor (a, b: x): x; begin result a end;
operator <(a, b: x): x ; begin result a end;
operator >(a, b: x): x ; begin result a end;
operator =(a, b: X): X ; begin result a end;
operator <=(a, b: x): x ; begin result a end;
operator >=(a, b: x): x ; begin result a end;
operator in (a, b: x): x ; begin result a end;
operator is (a, b: x): x ; begin result a end;
operator :=(out a:x; b:x):x ; beginend ;
begin

end.

The 6and 6+06 operators can be both wunary and bina
type of operator is indicated by the number of parameters that appear. There is only one operator
procedure, which is assignment (6:=06).

The paramters to an operatdunction can be any type, but cannotae parameters.

The parameters to the operator proceduod 6: =06 ca
mode.

The results onoperator function cannot be established vig&® 7185 by name function result
assignment. Instead, thenamed result form is used (s&@2fAnonynousfunction resuld).

The existence of an operator overload does not change the priority of the operator.

Operator overloads follow the same rules as standard overloads. Specifically, operator overloads
cannot be ambiguous witither each other, or the pareters of standard , built in operators

The types of built in operatoveith the exceptionosappears in | SO 7185 6.7. 2

The existence of an operatoreskoad will not cause the builh operator to be alteden any way. An
operator overload simpladds behavior where the btiitt operator would indicate a type error.

March 6,

2011 THE LANGUAGE PASCALNE

Note that since the system definition feris defined for any object, it is not possible to overload the
is operator for objects.

The use ofin operator overload function to introducecsa | | ed fAsi de effectso wild.l
as to when the side effect occurs, since Pascaline does not specify expression evaluation order.

6.27 Static procedures and functions

procedureheading = attribute 'poedure’ identifief formal-parametetist].
functionheading = attribute ‘function' identifier [formphrametetist] "' resulttype.
attribute ='overload' | 'static’ | 'virtual' | ‘'override' 6 o p.er at or 0

Pascalinalefines astatic attributethat is used before any functionprocedure to indicate that it is
used statically.

program p;
static procedure z;
var X, Yy:integer,
begin

{ statements of z }
end;
static function Y;
begin

{ statements of y }
end;
begin
end.

Thestatic word-symbolis used to indicate to the compiler titfa¢ procedure or function with that
attributewill not recursively calitself, nor be called bany subprocedure or subfunction

Onsomeprocessors with limited addressing resources, ugatgccan result in smaller and faster
executablgrograms, sometimes dramatically so. Compilers targeting more advanced processors
typically ignore thestatic word-symbol

In the case where the procedure or function is contangrelywithin a moduleand B not visible
outside the model (it is within the private séion), the compiler can automatically deteneithe
static status of a proakureor function. However, if it is visible outside the module, the compiler must

March 6,

THE LANGUAGE PASCALNE 2011

assume it may be recursively call&dthis case, thetatic attribute is required to obtain the improved
code.

Note

1. The compiler may also detect thatatic attributedprocedure or function calls itself, either
directly or indirectly via another procedure or function, and isswesran.

6.28 Relaxation of declaration order
block = { declaration } statemeitart .

declaratiorr labeldeclaratiorpart | constandefinition-part | typedefinition-part | variable
declaratiorpart | fixeddeclaratiorpart | procedurdeclaration ;' | functiodeclaration ;'

The declaration order in ISO 718ascabf labels, constants, typesriablesthen procedures and
functions is relaxed. These constructs can appear in any order. However, the rule remains that each
identifier must be declared before iise with the normal ISO 7185 Pascal exceptionpointer
declarations

Pointer forwad references must resolve within the saraedeclaration.
Relaxing declaration order in Pascaline is a more natural match for modular compilation.

6.29 Exception handling

try-statement = 'try(statementequencgtry-end .

try-end =(exceptseries | excepinconditional)['else' statement] .

exceptseries =exceptspecifier{ exceptspecifier} [exceptunconditional .
exceptuncondi ti onal = O0exceptd statement

exceptspecifier= 6 on 6 -eentfierpt ® od -@entfierpd e onept 6 st atement
block = { declaration } ['private’ { declaration }] statemepdrt [';' statemerpart] .

statemenpart = compoundtatement .

compounestatement = 'begiftry-end]statemensequenc§ O6r esul t'éndexpr essi on]

Themostcommon use for interpredure gotos is to handle error returns edsilgn deep nested
procedures. Pascaline provides an alternatinecture. Thetry statement executes one or more
statenents with an "exception guard":

March 6,

2011 THE LANGUAGE PASCALNE

program p;

var myexception: exception;

begin
try
(o ¥}
throw(myexception)
{ .. 1}
on myexception except {statementto execute on myexception }
except { statement to be executed on any exception }

else {statement to be executed if no exception occurs }
end.

If anywherewithin the guarded execution the statement:
throw (myexception);
or

throw;

is executed, any active procedures or nesigeistents are removed, and exeruresumes with the
statement aftegither the exception clause that matches the given exceptithre, general exception
statementlf no exceptioroccurs,exectuion continueitherwith theelse statement, if specified, or
the nexistatement after thigy statement.

The program:

THE LANGUAGE PASCALNE March 8,

2011
program p(output) ;
var myexception: exception;
begin
try
{.) |
throw(myexception)
{..}
on myexception except wr i teln(6The operation failed©)
else writeln(o6The operation succeeded?d)
end.
Is equivalent to:
program p(output) ;
label 1;
var myexception: boolean;
begin
myexception := false;
begin
{..} '
myexception := true; goto 1;
{..}
end;
1
if myexception writeln(6The operation failedd)
else writeln(6é6The operation succeededd)

end.

Thetry statement may carry a specific list of exceptions, followed by an optional unconditional
exception, or simply an unconditional exception. An unconditional exception matches any exception.
A specific exception only matches the named exception.

When an unsgcified exception is thrown, the result is as if an exception was thrown that does not
appear anywhere in the prhaglethanalwaysexisismany he fimast e

program.

March 6,

2011 THE LANGUAGE PASCALNE

try statements mayest. The result of executingrow is to retun to the innermodty staement
currently executing. If goto is used to branch outsidé thetry statement, then it will be effectively
removed fromactivation,andanythrow statements will go to the neatitertry statement.

If an exception is thrown, and either there igmostatement active, or oy statement matches the
exception indicated, then the result is an error. The result of unhandled exceptions tsyas if a
statement exists outside of the program that catmmegxceptions that are teandled within it, and
handlesthe exception by termination.

Exceptions are represented by a special variable dedintbe system level called tb&ception
type:

module throwit;
var myexception: exception;
procedure fault;
begin

throw (myexception)
end;

begin { throwit }
end. { throwit }

In order to throw aexception, both the thrower and the catcher must be able to sserieexception
variable. The exception to this rule is the unspecified exception, which is available program wide.

An exception is a predefined type. If an exception is passed as a parameter, it must be passed with
var mode.

The exception handler itself canmdlv another exception, including an unspecified one. However,
exceptions do not stack, nor is there any state, such as handled or unhandled, associated with
exceptions.

Note:

Exceptions do not cross thread or process boundaries. A thrown exceptionlyvikturn to
the same thread, and only to an active outer block of that thread.

A special version of thiy statement exists for modutenstructoisections (se6.37Af Mod ul ar i t yo) .
It is common for modules, which only execute when the program starts up and shuts down, to register
handlers for all of the exceptions that are thrown in that module. The reason is to allow the program

and othenestedmodules to hard the exceptions, but ultimately handle the exception in the

originating module.

March 6,

THE LANGUAGE PASCALNE 2011

module moutput) ;
var FaultException: exception;
procedure doit;
begin

throw (FaultException)
end;

begin { constructor }
end; { constructor }

begin { destructor }
on FaultException except writeln(o6*** module fault occurr
end. { destructor }

The constructor for the module behaves as if it perforniegd statemenat the end of the constructor
The destructor then finishes thrg statementNote that theon construct must appear immediately
after thebegin for the destructor block.

The primary purpose of a constructor/destructor exception handler is to handle exceptions defined
within the module. It is possible to handle exceptions created by other mdmluléss an error to
throw an exception to an exception variable whose module is not active.

Note that when an unhandled exception occurs in a separate process, that causes the entire program to
terminate.

Being a variable, an exception cahbe shared across procassnitorand channebarriers. This
means that monitor exceptions asdf-containedand go back to the monitor itself. General exiczs
go back to the processionitoror channethat contains them. An unhandled exceptionagisv
terminates the program, no matter what thread the exception occurs on.

6.30 Assert Procedure

Theassert procedure generates a runtigreor if its expression is not true

assert - statement = ‘assert' (' ex pression [0, Ccharacter -string]°)

The expression can be any expression with agamotesult type. If thexpresion evaluates at runtime
as falsethen the program faults, otherwiseontinues to run.

If a string constant is present after the exception boolean expression, it wil servei annot at eo t h
assert. Typically it contains the reason for the exception. It may be printed as part of any error

The program:

message. Alternatively, it may have no effect.

March 6,

2011 THE LANGUAGE PASCALNE

program p(output);

var pi: Ninteger;

begin

pi := nil;

assert(p <> ni, 6The pointer was nil 6)
end.

Is equivalent to:
program p(output);
label 99;

var pi: Ninteger,;

begin

pi := nil;

if p=nil begin
writeln(6 The pointer was nil 08)
goto 99

end;

{..}

99:

end.

Theassert procedure enables placing a large number of consistency checksaxitbgrambeing
developed that can be automatically removed from the codedmypiler option.

In addition, an implementation can provide extended debuggiognationwhenthe asserbccurs,
such as program location, registers, etc.

6.31 Extended range types

ISO 7185 Pascalefinestheresultsof integer expressions to lie within thenge-maxint..maxint.

The size of an integer is by definitichoserto be thesize that is most efficierstnd natural on the

target machine. Just as Pascatieéines operations to restrict results to numbers smaller than integer,
it defines the ability to find results larger than a standard integer. If largeintbgar variables and
operations are spedfi, it is assumed that somenaltyin terms of time, space or both will be added.

March 6,

THE LANGUAGE PASCALNE 2011

To specify an extended range value, a subrange is specified outside of themaxiget..maxint.
For example:

var li; 0..maxint*2;
Pascaline does not define the maximungtllerof such extended range types.

Whenanextended range value appears in an expression, the range of thevitelsalte a range
according to the following rules:

1. If either type is signed, the resultasignedtype.
2. If either type is extended range, the resuftriextended rangpe.

Operations with extended types ai guaranteedo be able to holdll the values obothoperands.
The implementation is only required to maintain at least the rangdu#s in iteger.

In addition, the programmer can specify the exact length of result gioamyn the evaluation of an
expression using range specifications. The only wagchieve an exact range of values throughout a
calculation is to specify it.

Pascalingredefines three new types of integer.

cardinal

Cardinal types represent the positive integers only. The range of cardinal is:

0..maxcrd;

Wheremaxcrd is a predefined constamhaxcrd is the maximum unsigned value ofreachineword
on the target machine.dbuld also be equal tmaxint on an implementation that does support
extendeccardinal types.

linteger

Long integer types represent an extended, signed integer type, defined as:

- maxlint..maxlint;

Wheremaxlint is a predefined constamhaxlint is typically themaximumvalueof a "double length"
result on the target machine, that is, a value formed tsimgnachine words. It can also be equal to
maxint on an implementation that doest support extenddihteger types.

Icardinal

Long cardinatypes represent the positive integers only. The rangEaoflinal is defined as:

0..maxlcrd;

March 6,

2011 THE LANGUAGE PASCALNE

Wheremaxlcrd is a predefined constamhaxIcrd is the maximum unsigned valoéa"double
length"result on the target machine, that is, a value formed tsimgnachine words. It can also be
equal tomaxint on an implementation that doest support extendddardinal types.

The interactions of binary operators on all integer based types is as follows:

TYPE A "TYPEB RESULT TYPE

integer integer integer

cardinal cardinal cardinal
linteger linteger linteger
Icardinal Icardinal Icardinal
integer cardinal integer

linteger Icardinal linteger
linteger cardinal linteger
integer Icardinal linteger
linteger integer linteger
Icardinal cardinal Icardinal

Unaryoperators simply deliver the same type as the operand.
Note

The lack of defined maximum for integer representation in Pascaline can be interpreted to
i mpl ement -sengtah | iedt digfN\er so0, which can be any |
the implemeted machine. This is the analog of arbitrary length sets in ISO 7185 Pascal.

6.32 Extended real types

Pascaline defines two new real typgeal andlreal:
program p;

var sr: sreal;
Ir: Ireal;

begin
end.

Unlike integers, Pascaline cannot setrangesferal t ypes. Al so unli ke intege
size of a real for most machines, as in the native type that is inherent to the word size of the machine.

sreal defines aeal type that smaller and has less precision than a ISOréESreal defines aeal
type that is larger and has greater precision than a standard IS@alL85n sreal has a precision
that is less than or equalreal, andireal has a precision that is greater than or equegab. In
practice srealscan be equivalerib reals, andreals can be equalent teals.

The use of agreal implies that the programmer wishes to save space, and perhaps execution time
over the use of an ISO 718ascaleal, in exchange for less precision and total range. The use of an

March 6,

THE LANGUAGE PASCALNE 2011

Ireal implies that the programmer wishesolatain more precision and total range than an ISO 7185

Pascaleal, i n exchange for using more space and per ha
is used here because it is common to simply extend all realttypies same length on some machines

and process them identically.

All real types are compatible with each other, and behaveads in all contextsln equationsreals
are always fivalue conservingo. Theelargesofithet of mi x
two.

The result of using differemeal types in combination is:

Type A Type B Result type

real real real
sreal sreal sreal
Ireal Ireal Ireal
sreal real real
Ireal real Ireal
Sreal Ireal Ireal

6.33 Real Limit Determination

Several nevgystem defined constants are defined to express the limits of real numbers:

Type ~Low Limit High Limit
real -maxreal maxreal
sreal -maxsreal maxsreal
Ireal -maxlreal maxlreal

6.34 Character limit determination

Pascaline provides a constant ¢baracter sémplementation limits:

maxchr

This character constant defines the maximum value of a character in the range:

chr(0)..maxchr ;

maxchr is of type char.

6.35 Matrix mathematics

One dimensional arrays integers or reals and two dimensional arrays of integers or reals can
participate in expression operations:

1

I

March 6,

THE LANGUAGE PASCALNE

2011

Operator Function |
+a matrix affirmation

-a Matrix negation

at+b matrix Addition

a-b matrix Subtraction

a*b matrix Multiplication

program p;

type ai: array 10 of

var ail, ai2: ai;

begin
ail := ail+ai2;
ail ;= ail+1
end.

Is equivalent to:

program p;

type ai: array 10 of

var ail, ai2; ai;

i integer,;
begin
for i =1
for i:=1
end.

For a matrix case:

integer;

integer;

10 do ail[i] := ail[i]+ai2[il;
10 do ail[i] := ail[i]+1

March 6,

THE LANGUAGE PASCALNE 2011

program p;
type ai: array 10,10 of integer;

var ail, ai2:; ai;

begin
ail := ail+ai2;
ail ;= ail+l
end.

Is equivalent to:
program p;
type ai: array 10 of integer;

var ail, ai2: ai;
X,y: integer;

begin

for x:=1 to 10

for y:=1 to 10 do ail[x,y]:= ail[x, y]+ai2[x, Vy];
for x:= to 10

for y:=1 to 10 do ail[x,y]: =1,

end.
Any single dimension array of integers or reals withintegesstarting index of 1 qualifies as a vector.

Any two dimensional array of integers or reals with biotegerstarting indexes of &nd equal major
and minor dimensiongualifies as a matrix. TEhallowable operands are:

atb a or b may be matrix, integer or
real.

a-b a or b may be matrix, integer or
real.

a*b a or b may be matrix, integer or
real.

For two vector or matrix operands to be compatible with each other, theypenokthesame type, or
aliases of that type. The result is the same type as the operands.

One of the operands of +,0r * can bean integer or real when the otlséde is avector or anatrix.
The result of this is a vector or matrix with the given operation performed on each element of the

March 6,

2011 THE LANGUAGE PASCALNE

matrix using the single real or integer. However, a singlecazalotbe used with a integer matrix, as
this would implyconversiorof real to inteer.

program p;

type ai: array 10 of integer;

var ail: ai;
begin

ail := ail*2
end.

Is equivalent to:
program p;
type ai: array 10 of integer;

var ail: ai;
i: integer;

begin
for i:=1 to 10 do ail [i] = ailfi* 2
end.
And
program p;

type ai: array 10,10 of integer;

var ail: ai;
begin

ail := ail*2
end.

Is equivalent to:

program p;

type ai: array 10,10

var ail: ai;
X, y: integer;

begin

for x:=1

for y:=1

end.

to 10
to 10 do ail [x,Y]

of integer;

March 6,

THE LANGUAGE PASCALNE 2011

= aillx, yJ* 2

Vectors or mtricescan also be assigned as a whole:

program p;

type ai: array

var ail: ai;
begin

ail:=1
end.

Is equivalent to:
program p;

type ai: array

var ail: ai;

i: integer;
begin

for i:=1
end.
And

10 of

10 of

integer;

integer;

to 10 do ail [i]

March 6,

2011 THE LANGUAGE PASCALNE

program p;

type ai: array 10,10 of integer;

var ail: ai;
begin

ail:=1
end.

Is equivalent to:
program p;
type ai: array 10,10 of integer;

var ail: ai;
X, y: integer;

begin

for x:=1 to 10
for y:=1 to 10 do ail [x,] =1

end.

Such avector ormatrix assignment causes the expression to be assigned to each of the elements of the
vector ormatrix. The assignment compatibility rules are the same asewiar ormatrix assignment.

If individual elements of theector ormatrix are assignment compatible with the expression, then the
entirevector ormatrix is also assignment compatible.

Vector or natrix expression operators do not perform a function that couldenatlded to Pascaline
as a library function. Their primary reason for being here is that such operations can often be translated
to efficient operations directly in the target hardware.

6.36 Properties
propertyidentifier =qualifiedidentifier.

propertydeclaation= attributepropertyi dent i f iddem od e &b |Ooyqgbke rbeladdc Wwr Dt é
readblock = block .
write-block = block .

A propertyis declared object that appears as a variable, but has the reading and writing of its contents
completely defied by the program that contains it:

March 6,

THE LANGUAGE PASCALNE 2011

program p;

var sum: integer;

property myval: integer;

begin {read definition }
myval := sum

end;

begin { write definition }

sum := sum+myval

end;
begin

sum = 0;

myval := 10;

myval := 5;

writeln(o66myval is 6, myval)
end.

Thepropertydeclaration is followed by two blocks, the first bethg read definition block, arttie

second being the write definition block. During the read and write definition blocks, the identifier that
is the sae as th@ropertycarries the value that is written or readd acts agnordinary variable

within the definition block that can be read or writt@utside of theropertydefinition, the identifier

is defined by the actions in the read and write dtéagim

At the end of the read definition, the canttef thepropertyidentifier variable is used to satisfy the
read request.

At the start of tie write definition, the contemtf thepropertyidentifier variable is set from the write
request.

Thus in theexample, two write requests are madentpval which sums them starting with zero, and
the final read request returns the resulting sum, 15.

Propertiesare a step beyond operator overloading, which can define the calculation of values for entire
classes ofariables with a given typ@ropertiexan set the exact behavior of individual objects, even
if they all have the same type.

March 6,
2011

THE LANGUAGE PASCALNE
Notes:

1. Thepropertycan be any type, including structured types, with the exception that it cannot be a
file or be a structure cwaining a file, because a file cannot be the target of an assignment.

2. Each of the read and write blocksagfropertycan have its own declaration section. The
declaration for each of the read or write blocks applies only to that.block

3. Properties can bierwardedjust as procedures and functions can.

6.37 Modularity
module = moduléneading ';' modukbdlock "' .

moduleheading= moduletype identifier ['(' modulgparametetist)'] .
moduletype = ‘program’ | ‘'module’ | ‘process’ | 'monitort| h a n'shad .0 |

moduleblock = usegleclaratiorpart { moduledeclaration } ['private’ { moduleleclaration }]
statemenpart [;' statemerpart] .

moduledeclaration = declaratigrclassdeclaration .

usesdeclaratiorpart = [link-specification modulmame{',' modulename }] .
link-specification = 'uses' | 'joins’ .

modulename = identifier .

ISO 7185Pascal expresses programs as a series of nested lloankprogramso procedures and
functions. Unfortunately, this model tends to require compila®a single unit.

Pascaline defines a series of modules whicle ltlae same status and levebgsogram block, but
exist in separate files. The basic module appears as:

module x(input, output);
uses mymodule;

var X:integer;

private

var y:integer,

begin
end.

A moduleappears very much like a program block. It exists in a separatk figm have header
parameters. It has a main blottkalsohasan"ending"block. Unlike the program block, Modules are
not typically designed to execuia theduration of the program, but rather to run at some time before
the program block. A module initializes its valiles, then passes controlatherto other modules, or
the program block. If the module has a termination block whisbe executedsometine after the

March 6,

THE LANGUAGE PASCALNE 2011

program block completes. This allows thedule toperformclean up on termination, such as closing
files, etc.

Modules allow a collection of resources todoeated, such dabels, constants, types, variables, fixed,
procedures, and functionBhese are collecteabs a unit to serve the program. A program block can be
thought of as specialcase of a module that has no termination block.

Thebonding of modules and programs into an executable unit, as well as the order in which the startup
blocks and terminatioblocks are executed is implemation defined.

Theuseof a module by another module or programpecifiedby theuses orjoins dechration:

uses modl,mod2;

or

joins modl,mod2;

Theuses andjoins specifiers musprecedeany other declaration withimprogram or module. There
can be only one uses and one join specifier per progranodule.

Both auses and gjoins specification cause thaeclarationgontainedwithin the specified module to
be imported to theuterblock declarations of the importing module or program. This importation is
logically done as ithe sourcéfile itself wereactually read. However, tregjuivalent of this action may
beperformednsteadby reading a preprocesseduivalentof the target program anodule.

A uses orjoins specification only imports that specific module. If the importextiule itself imports
further modules, which it may geire to complete its declaratiora)y such import must occur without
exposing that secondary modulélie original importing module. This is a-salled "ircidental

import", and necessarguchimports will be completed such that their declarationsasedable to the
requesting module, but not the original importing modtités cancreatethe situation that the

importing module receivedeclaration®f whichit cannot access the component declarations within. If
the importing module mustccess suchomponents, it must specify the containing module uses
orjoins specification. This prevents "zipper effect”, where a importing magktiganunintended

series of submodules included.

Importedand importing modules can contain loops or mutually refgmmodulesHowever, thdSO
7185Pascatule remains that aidentifier must be definetdefore its use, with the exception of
pointers. Further, pointer declarations mtplete within the same module. Import loops can create
non-obviousdefinition problems:

March 6,

2011 THE LANGUAGE PASCALNE

module x;
uses ;

type q =integer;
begin

end.

module v;
uses X;

type r=gq;
begin

end.

Will result in an undefined declaration error because modiiéss not completed thaeclaratiorof g
at the time modulg is processed.

Note that module& andy are in different files. Only one module may appear in a file.
Note that implementations may optionally flag module loops as errors.

All of the declarations of a module can be exported, including constants, types, variables, fixed,
procedures, functions and classes with one exception. goto labels cannot be exported, and a goto
statement cannot target a module other than its own.

However, it is simple to Abridged a goto into a

100

March 6,

THE LANGUAGE PASCALNE 2011

module m;
label quit;

procedure abort;

begin
goto quit
end;
begin
{ .. }
quit:
end.

The reason this is required is because the procedure abort was compiled at the same time as the goto
target quit. The information required to adjust program parameters such as the stxellaivke at
that time.

Imports obey the rule that no module is read twice. This preventethi@uougprocessing of
modules.

The appearance ofuses specification causesehidentifiers within the impoed module to be

merged without qualification tdné importing module or programamespace The identifiers can be
directly used, and an error will be flaggéthere is a duplicate name between importing and imported
modules.

The appearance ofjains specification causes the identifiers to be maaelable in "qualified” form.
A qualification appears as follows:

qualified-identifier=modulen ame { 6. 6 i denti fier }
For example:

mod1l.alpha

Qualificationpreventghe collision of name spaces and is the preferred metfiagehporting modules.

Notes:

101

March 6,

2011 THE LANGUAGE PASCALNE

1. Without auses orjoins specificationmodules and programs will noonflict even if there
are one or more names that are identical between them.

2. Because of the circular nature of imports, it is possible to refer to the components of a module
before it hasxecuted its start block. This is an error that may or may not be caught at runtime.

3. ltis an error to calh procedure or function that is not active. This is an error that may or may
not be caught at runtime.

Pascaline provides a way to credéelarations in a module that are not visityemporting modules
or programs with therivate specification:

module x;

type alpha= array 10 of char,
private

var Xx: alpha;

begin
end.

Theprivate word-symbolcanappear anywhere between declaratittnisdicatesthat all further
declarations in in a module cannot be exported.afipearancef the private word-symbol

essentially divides theuterdeclarations of a moduleto a "public" section that appears first, and a
private section thdbllows. The declarations for a module can thus be set up as a set of public
declarationghat define the external interface for the module, and a set of private declarations that
perform the work of defining the functionality of the module.

Thepublic and privatareas cannot be mixed or changed in order. Specifidaliynot possible to
create a public definition that is built with private declarations in Pascaline (so called "opaque" types).
However, the converse is possible, private declarations based andgmdbarations.

Procedures and functions can be forwarded across fropubiie areato the privatearea.Thus,it is
possible to create procedures &mctionsthat useprivatedeclarationsuch as variables and other
procedures and functions.

Pascalie does not enforce the structure of intermodule links, nor is this \litaipower of a
language. However, the most reliable structure for modukesrée with the program module at the
top, andsuccessivéayers ofserviceandsupportroutines below tat. This kind of structure necessarily
excludes loopgheallowanceof which was required to enable intermodule gotos to process
exceptions. The modern means to do that is with exceptions.

6.37.1 Definition vs. implementation modules

Pascaline does not definespecial definition as opposeddaaimplementatiormodule. An
implementation module, a module containing all of the source code required to define the contents of
the module, also serves as its definitmoadule.

If it is required to construct a module ¢aiming just the definitions within module, and not the
implementation source, the common method used'&rip" the moduleto arrive at a defacto

102

March 6,

THE LANGUAGE PASCALNE 2011

definition module. Stripping means to remalkdefinitions that are private, and to remove the
contens of any publigrocedureor function. This will give a module that can be used to define the
interface to the module for other modules, but cannot be used to build the nitaduigically used

in conjunctionwith modules that have already been conghjeprocessed to object code in the target
processor.

Such definition modules can be manually or automatically constructed bygglenentation.
Definition modules can be verified by compilation with sufficieptions to ignore unreferenced
definitions and lack of functiomesultassignments.

Definition modules can also be used to represent modules written in another language, or even
assembly language. It is this facility, defined entirely by the Pascaline processor, that takes the place of
theexternal directive defined in ISO 7185 Pascal.

6.37.2 Overrides

procedureneading = attribute 'procedure’ identifier [formpalrametetist].

functionrheading = attribute ‘function' identifieformal-parametetist] ":' resulttype.

propertydeclaratiorr attributeproperty-i dent i fidem od e &b [tOoygdke rbelabdc Wr Dt é
attribute = 'overload' | 'static’ | 'virtual' | ‘'override’ 6 o p.er at or 0

Overrides give the ability for new modules to add to or replace the functionality of older modules. This
may gve, for example, the ability for a new module that implements graphical operations on a printer
the ability to add to an existing graphical module that implements such operations on a user terminal.

A function or procedure can be specified as capableiofjoverridden by higher level modules (or
even the same module). In order to be overridable, the procedure or function roifigtisate
capability using theirtual word-symbol

module m;

virtual procedure Xx;
begin

end;

begin
end.

Whenspecifyinga procedurefunctionor propertyas virtual, the user should realthat there is a
small cost in program run time, program space, or both to htreltequiements of a virtual
procedurefunctionor property

To override the pradure functionor property, the wordsymboloverride is used:

module m;

103

March 6,

2011 THE LANGUAGE PASCALNE

override procedure Xx;

begin
end;

begin
end.

In many cases, a procedutenctionor propertythat overrides another will extend @range it by
handling thenew features of the procedufenctionor propertyitself, but then send the unchanged
part of the service back to theerriddenprocedure or furton. This can be done via tiheherited
word-symbot

module m;
override procedure x(q: integer);
begin
if g=1 then inherited x(q) else {p erformhere}
end;

begin
end.

Theinherited word-symbolspecifieshat the following proceduréjnctionor propertycall isto be
sent back to the original overridden version.

If multiple overrides of a functioprocedureor propertyexist, they will nest. The procedufanction

or propertythat is actually performed is thest procedure or function overridddrhe function or
procedure that is performed when inherited is spedsi¢ide function or procedure that was current at
the time of the override.

Only one oerride for the same procedufenctionor propertycan exist in a modul&heinherited
version of a proceduréjnctionor propertycan only be called from the moduleat overrides it.

The order in which overrides aggecuted is the same the orderof moduleor objectinitializations

Override procedurefnctionsand propertiesan only exist at the outer block of a module. They may
not be nested.

Theoverridden virtual procedurénctionor propertymust be exteral.
The virtwal procedure ofunction and its overrider must be congruous.

No overloads can exist tovértual or override procedure ofunction.

104

March 6,

THE LANGUAGE PASCALNE 2011

A virtual procedurefunctionor propertyneed not contain useful code. A typical design paradigm is to
useadecl aration with no useful i mpl ementation to d
will be defined by further overrider modules:

program graphics;
var notimplemented: exception;
virtual procedure setpixel(x, y: integer);
begin
t hrow(notimplemented)
end;
virtual procedure line(x, y: integer);
begin
t hrow(notimplemented)
end,;
begin
end.

Only a monitor can override other monitors. Share modules cannot contain overrides.

6.37.3 Parallel modules

A modulein Pascalindormsthe bag structure of a program. Throgram block itself is actually a
special instance of modulewhich hasno endingblock. Togetherprogram modules and common
modules form a group that runs timain task of the program.

Theprocess module appears just apaogram module. It has only atartingcodeblock, and no

ending code block. It can accept header parameters. The difference between a process and a program is
that the process definemawtaskwithin the program that runs in pallel with the main task, or any

other process blocks.

105

March 6,

2011 THE LANGUAGE PASCALNE

process mythread(input, output);
uses mymonitor;

var XY,

procedure q;

begin
end;

begin
while true do writeln(é6l am another thread©)
end.

A process can run "forever", in which cassiihply terminatesvhenthe maintask terminates, or it
can run for a time and then stop. A process stops wiegitstfrom its startup block.

A process can haveuses statement, but it cannot ugest anymodule.To do sowould be to conflict
with the mén task run by the program module. No othmdulecanuse a process module. A process
can use its own globals or routines, and carausenitor.

A monitor module appears just as normal, program callable module:

106

March 6,

THE LANGUAGE PASCALNE 2011

monitor m(output);
procedure locked; forwa rd;
private
var Xx,Y;
procedure locked;
begin
x:=1
end;
begin
{ startup statements }
end;
begin
{ shutdown statements }

end.

Themonitormodule is a multitask "hard" module. Each of its publicly callpbbeeduresfunctions
and propertiebave a special locking function that is executed on ¢atiye routine, and unlocked on
exit. The net effect is that only one taskning under Pascaline is allowed within a monitor at one
time. This preventghe data corruption that walibtherwise occur in a multitasking system.

Monitors have other special requirements that prevent data corruption. A noamitat have global
variable definitions. All global variableaustbe definedwithin the private section. Procedures and
functionscan be defined in the global section, which means that they are multitask locked procedures
and functionsbutto accomplish usefwvork, they must typically be forwaed into the private

section.

Finally, monitors cannot usear or call by reference for any catl anothergxternal procedure or
function. This is to protect the locking of a monitor. Monitors can have a public proagdunetion
with var parametersThis means that a monitor routine can access the variabitssoaflling taskbut
cannot export such references, nor export the monitorgdatain avar passed variable.

Monitorscan use other monitgratoms, channels and liaisoisit cannot use grocess, program
ormodule. However there is a final module fotimat can be usdaly anyothermodule,all of
process, progranmodule and monitor, known asaare module:

107

March 6,

2011 THE LANGUAGE PASCALNE

share mylibrary(output);
procedure X;

begin
end;

begin
end.

share modules cannot have any global variables at all. Because of #ilsglias no startup or
shutdown code blocks. There is nothing share to set up oto shut down.

The advantage to a share is that it can contaariasof supportroutinesthat can be accessed by any
caller. A share acts as a monitor without any glalad, but does not have the locking overhead of a
monitor.

6.37.4 Monitor signaling

Monitors serve as more than just a library of procedures and functilableby any task. Because a
module has state in the form of globals, it can sengecasnmunications metddetween tasks. In
Pascaline, thenonitor is how multipletasks coordinate their actions.

Givenjustthe definition of monitors above, it would be possible for tasketoemunicate by using

status routines to flag conditions betwdleem.However,each tak would have to poll, or continually

call a monitor function to find oubat status. This wastes computer time that multitasking is supposed
to useefficiently.

Instead Pascalinelefinesa special variable calledsmaphore, and a fewspecial routinethat can
be used witthem,thesignal, signalone, andwait procedures.

108

March 6,

THE LANGUAGE PASCALNE 2011

monitor queue;

type byte = 0..255; { data type for queue }

procedure inqueue(b: byte); forward ;
procedure outqueue(var b: byte); forward ;
private

const maxque = 100; { maximum leng th of queue }

type queinx = 1..maxque; { pointers for queue }

var fifo: array [queinx] of byte; { fifo for queue }
inptr: queinx; {in pointer }
outptr: queinx; {out pointer}
notempty: semaphore; { not empty signal }
notf ull: semaphore; { not full signal }

{ queue pointer iterator }

function next(i: queinx): queinx;

begin
if i=maxque then i:=1{queue has wrapped }
else i:=i+1;{ next location }

next := i { return result }
end;
{ test queue is full }
function empty: boolean;
begin
empty := inptr = outptr { pointers are equal }
end;
{ test queue is empty }
function full: boolean;
begin

full := next(inptr) = outptr { next input location is out

109

March 6,

2011 THE LANGUAGE PASCALNE

location }
end;
{ place byte in queue }
procedure inqueue(b: byte);
begin

{if full, wait until a byte clears }
while full do wait(notfull);

{ place input byte }
fifo[inptr] := b;

{ set next input location }
inptr := next(inptr);

{ signal queue is now not empty }
signal(notempty)

end;

{ get byte from queue }

procedure outqueue(var b: byte);
begin

{if empty, wait until a byte is available }
while empty do wait(notempty);

{ get output byte }
b := fifo[outptr];

{ set next output location }
outptr := next(outptr);

{ signal queue is now not full }
signal(notfull)

end;
begin { constructor }
{ set input = output, and queue is empty }

inptr = 1;
outptr=1

110

March 6,

THE LANGUAGE PASCALNE 2011

end.

Thewait procedure acts just as a loop to poll if the condition representix sgmaphore has
occurred, but it is implemented efficientipderPascalineTypically, the calling task is put to sleep
until the signal occurs, then itwgoken up again to contieu

When asignal call is made, this causes any and all tasks waiting osighalto be freed to run. If the
signaling tasks knows that only one task can actualythe signal, it can use thiggnalone call
instead. This will only fre@p a single taskand leave the rest to wait for the next signal.

Semaphoregive tasksan easy method to flag a given event between them. areayiost commonly
used to pass data between tasks. A "data provider\wiasld placedata into global structures in the
monitor,then signal to any "data consumer" tasks that the monitor has data.

Semaphores can only be used within a monitor, which is the only placeabhayeaningA wait

call would not be useful if it left the monitor lock in effebtpcking any other task fro signaling to it.
Thewait call releases the lock ahemonitor that calls it until it is signaled and emerges from the
wait. Thenit reasserts the lock and continues.

Semaphores are implemented under Pascaline as tialitdyingthe propertythattasks that wait for a
semaphore receive the signal on a "first céimst serve" basis. Howeveff,the signal procedures
usedto signalmultiple tasks (as opposed tsggnalone call), it is possible that one or more of the
signaled tasks coulithd that the condition beingaitedonis nolongertrue,sinceanothertaskhas
serviced it first. For this reasomait is used in a loop that checks for the condition being true.

111

March 6,

2011 THE LANGUAGE PASCALNE

monitor lock;

procedure getlock; forward;
procedure putlock; forward;

private

var lockactive: boolean;
lockfreed: semaphore;

procedure getlock;
begin

while lockactive do wait(mysignal);
lockactive := true

end;

procedure putlock;

begin
lockactive := false;
signalone(lockfreed)
end;
begin

lockactive := false
end.

Note thatsignalone could be implemented asgnal. This means that the wait loop method should
be used even withignalone.

The equivalent code faemaphore wait, signal andsignal one is:

112

March 6,

THE LANGUAGE PASCALNE 2011

module signal;

private
type semaphore = record
one: boolean; ! single/multiple signal flag
ing: integer; ! input queue pointer
outq: integer I output queue pointer
end;

var s:semaphore;
I'F ind next queue circular position
function next(i: integer): integer;
begin
if i =maxint then i =0 else i =i+l
result i
end;
I Test for queue empty
function empty(var s: semaphore): boolean;
begin
result s.outq = s.inq
end;
I Test for queue full
function full(var s:semaphore): boolean;
begin
result s.outg= next(s.inq)
end;
procedure wait(var s:semaphore);

var p:integer; ! our place in queue

113

March 6,

2011 THE LANGUAGE PASCALNE

begin
I'if queue is full, wait for entry
while full(s) do escape;
s.ing := next(s.inq); ! advance input queue
p :=s.ing; ! save that position
while s.outq <>p do escape; ! wait for our turn
I'if there are more in queue and not single mode, advance
if not (s.one and notempty(s)) then s.outq:=next(s.outq)
end;
procedure signal(var s:semaphore);
begin
I flag signal complete
i f not empty(s) then s.outq := next(s.outq);
s.one := false ! set multiple waiters ok
end;
procedure signalone(var s:semaphore);
begin
I flag signal complete
if not empty(s) then s.outq := next(s.outq);
s.one :=true ! set single waiters
end;
begin !initializer block for signal

I set no signal active

s.inq :=0;
s.outqg ;=0

end.

The procedure escape exists in anothedule. Its only purpose is to break the monitor lock in signal,
which is satisfied by exiting the module and returning. It could do more, for example it could make a
system call to release the rest of its task time.

share other;

procedure escape;

114

March 6,

THE LANGUAGE PASCALNE 2011

begin

end;

The equivalence implements a fair locking scheme. Each of the waitersiforaéis placed in a first
in, first out queue. Fasignalone, only the head task or first in receives the signal slgnal, all of
the waiters in the queue recetbe signal.

The difference between this equivalent implementation of semaphore, wait, signal and signalone is that
the system specific implementation can arrange for only the prime entry waiting on a signal is
scheduled to run. Thus, there is no polling an wasted CPU time.

6.38 Channels

A channel is one step beyond a monitor. It does not allow any procedure or subroutine to appear as
public, bu instead only allows propertiés be exposed publically. As with a monitor, the raad
write blocks of arpropertyare locked.

115

March 6,

2011 THE LANGUAGE PASCALNE

channel ticket bin ;

property ticket :integer ; forward ;

private

const ticketmax = 100;

var ticketbin: array ticketmax of boolean;
ticketfree : semaphore;
i 1.. ticketmax ;

property ticket :integer 6;

var i,f: 0..ticketmax :

begin !read

while notickets do wait(ticketfree); { wait if no tickets }
I find the free ticket

for i:=1 to ticketmax do if ticketbin[i] := false then f:=1,
ticketbin[f] := true; ! allocate ticket
ticket :=f | place tick et

end;

begin ! write

ticketbin[ticket] := false;

signalone(ticketfr ee) ! signal one ticket was freed
end;
begin ! constructor

for i:=1 to 100 do ticketbin[i] := false
end;

Channels are a more advanced multitasking objectrtiwanitors because:

1. They dondt have or need the pointer
parameter lists for procedures or functions.

passing

2. The fAcliento and fAservero of a channel <can
processor, ifferent shared memory processors, wholly separate processors, and even
geographically separated processors connected by a network, without the overhead and
problems of remote procedure callfie server can even be implemented in hardware.

116

r

be

€

March 6,

THE LANGUAGE PASCALNE 2011

6.39 Classes

classdeclaration {'class| 0t h r e adeniifier '[@lassparamiedetist | ;' ['extends’ clasaame
“']1block".".

classparametet i st =p adn dmetl ampa{r amed ecrl ajs sd6) 6
classparameter [O6vi ewldi §t i-idbmfiert.t y p e r

classname = qualifieddentifier .

block = { declaration } ['private’ { declaration }] statemeggart [;' statemerpart] .

declaratiorr labeldeclaratiorpart | constandefinition-part | typedefinition-part | variable
declaratiorpart |fixed-declaratiorpart | procedureeclaration ;' | functiondeclaration

Modules in Pascaline provide a waypackagdypes,variables procedires,functionsand other
definitions together as a unit to be used by other patteqgfrogram. Classes extend this further by
providing a general description ofreodule that the program can create anyiber of instances

In the Pascaline model, modslare both a deription of a class, and the omhstance of it.
Classes fit in the prograhierarchybetween modules and procedures/functions:

Modules
I
\ /
Classes
I
\ /
Procedures/functions

Theclassis a collection of types, variables ambcedures called "membersihd it has peinstance
data.

A class is declared by theord-symbol“class”, and it can appeanywheren thedeclarations of a
global module such aspgogram or module, etc.

117

March 6,

2011 THE LANGUAGE PASCALNE

program p(input, output) ;
uses mylib;
class myclass;
label 1, 2;
type a=char;
var c,d:integer;
procedure X;
begin
end;
private
procedure v;
begin
{ optional constructor }
end;
begin
{ optional destructor }
end.

begin { program }
end.

Whena procedure or function appears idass, it is referred to as a methédclass can refer to any
of the declarations the surroundingnodule.The methodof a class can refer to both the variables
inside the class as well g variables in the module that surrounds it.

As a nodule cana class can use tipeivate word-symbolto specifydeclarationsithin the class that
are private.

A classdoes not create any actual variables, procedures and functions whaefihed A class is a
template foraobject To <cr eat e alass, fi mustjbeirstantiated, wbiagh means to give
the class a complete set of locations in memory. If that memory is static, the instance is static. If the
memory is allocated dynamically, the instance is dynamic.

118

March 6,

THE LANGUAGE PASCALNE 2011

6.39.1 Static objects

To create a static instae, the class is used to form a type as follows:

type si = instance of c;

Which can be used to form static instances of the class:

var Zz:Ssi;

The clasg is not itself a type, nor can it be used as ssigihowever, is a type. To use a class as a
type,the compiler must know if a static or dynamic instance is meant.

A static instance is static even if it is a local of a procedure or function, or instantiated within another
class. An instance does not become dynamic unless it is allocated dynamicaéyvia

6.39.2 Dynamic objects
To create a dynamic instance, the class is used to form a type as follows:

type di= reference to c;

Which can be used to form a dynamic reference to objects of the class:

var z: di;

Wherec is a classThis creates a special varialused to access the "object" thiastantiates'the
class. The actual creation of the object is done by the standard progesluranddispose:

new(z); { create new object, referred to by z }
dispose(2); { destroy existing object referred to by z }

The definitions for the object referenceddyan be accessdxy the same notation as fojans
module:

zc :=1;{as sign value to object variable }
z.x; { call object procedure x }

A reference variable can point to any object defined with a compatéss. Itcan also point to no
object at all:

z:= nil ;

Justas a pointer variable can. Further, twferences can be compared, aigsed, just as pointers
can:

119

March 6, THE LANGUAGE PASCALNE

2011
program p;
class ¢c;
begin

end.

var z,q: reference to c;
begin
z:= nil ;q:=z

if z= nil then {perform actions on nil}
if g=z then {perform actionsonqg= jeje z}

end.

In fact, a reference behaves just as a pointer, but without the ngeecttya dereferencé”").
Anytime a qualifier (".") follows a reference, it is understood that the object referenced is being
accessed.

Just as for pointer a reference can appear iwiah statement:

program p;
class ¢c;
begin

end.

var z: reference to c;
begin
with z do {statements}
end.
This effectively opens up the scope of the object within the code.

Notes:

1. References are treated as pointers with respect to monitors. A referencebeaexymirted by
a monitor routine.

120

March 6,

THE LANGUAGE PASCALNE 2011

6.39.3 Classes as parameters

When a class is paed as a parameter, its dynamic or static form is irrelevant to its parameter status.
Only thevar mode can be used on a class as a paraniéieitype used for the parameter is the class
itself.

program p;
class c;
var i:integer;

begin
end.

procedure x(var Vy:c),

begin

begin
with z do {statements}
end.

6.39.4 Class parameters

Classes accept parameters that are a subset of procedure and function parameters. Only value and
view parameters are accepted in a class paramigtérith the exception of file parameters, which
must always bear under ISO 7185 Pascal rulés)

Y In ISO 7185 specifying file parameters\a means that they are modified globally, and the reutivat is
called does not receive a copy of the entire file. This is true of files in Pascaline as well.

121

March 6,

2011 THE LANGUAGE PASCALNE

program p(output)
class stringc(size: integer);
type string: packed array of char;

var data: ~string; ! string data buffer
len: integer; ! current length

operator := (d: stringc; view s: string);

var i:integer;

begin
if max(s) > size then begin ! string is larger than our buffer
dispose(data);
new(sdata, max(s));
size := max(s)
end;
for i:=1 to max(s) do d.sdatali] := s[i];

d.len := max(s)
end;
procedure print;
begin
for i:=1 to len do write(sdata[i])
end;
begin ! constructor for string

new(sdata, size) ! allocate string data
len := 0! clear string

end;
begin ! destructor for string

dispose(sdata) ! release space for string data
end.

var mystring(100): instance of string;

122

March 6,

THE LANGUAGE PASCALNE 2011

begin

mystring := o6hi therebo,;
mystring.print

end.
Class parameters are special in that they are specified when thefaipjeet from the class template

is instantiated. The class parameters are evaluated, and kept as long as the object exists. The
constructor, the destructor, and all of the methods of the class can access the class parameters.

program p
class filelist (size : integer);
var filearray : array of text ; larray of text files

procedure open(i: integer);
begin
rewrite(filearray[i])
end;
begin ! constructor
new(filearray, size) ! allocate file array
end;
begin ! destructor

for i:=1 to size do close(filearrayl[i]);
disp ose(filearray) ! release space for string data

end.

var files (100): instance of filelist ;

i: integer;
begin
fori:=1to 100 do files.open;
for i:=1 to 100 do write(files.filearray]i], i)
end.

123

March 6,

2011 THE LANGUAGE PASCALNE

Note that the actual parameter list for the class appears where it is instantiated. For static instances, this
is the variable declaration for it. For dynamic instances, it is#we statement that creates the object.

Typically, class parameters performiay e omet r yo change within the objec
parameter different from just applying a method to it after its constructor executes. A method could not

specify the creation of the parameterized afil@}ist above .Class parameters haweany uses, and

be used to specify any class configuration parameter.

The parameters for the class appear after any parameters for array template geometries. This would
occur if the object was part of a container array:

124

March 6,

THE LANGUAGE PASCALNE 2011

program p
class filelist(size: integ er);
var filearray: array of text; ! array of text files
procedure open(i: integer);
begin

rewrite(filearray[i])
end;
begin ! constructor

new(filearray, size) ! allocate file array
end;
begin ! destructor

for i:=1 to size do close(filearrayl[i]);
dispose(filearray) ! release space for string data

end.

var files(10, 100): array of instance of filelist;
i j: integer;

begin

for j:=1to 10 do begin

fori:=1to 100 do files [l -open;
for i: =1 to 100 do write(files U] filearrayfi, i)

end

end.

6.39.5 Inheritance

classdeclaration {'class| 06t hr e 4 d @& |)idedtifeto pcl@ssparametetist | ;' ['extends'
classname ;" olock "." .

expressionr simpleexpression [relationalperator simplexpression | .

relationatoperator = '=" | '<> | '<"| >'| '<="| >="|'in"| is" .

125

March 6,

2011 THE LANGUAGE PASCALNE

Classes can "inherit" the definitions contained in other classes:
program p;

class x;

begin

end.

class v;

extends X;

begin

end.

begin { program main block }
end.

Theextends word-symbol is followed by the class that is inherited.

Themeaningof thisis thatthenew class receives all of the definitigm®sent in the inherited class,

and can then add itsvn. Objects have thepecialproperty that all references to a class are compatible
with any class thas built byinheritingdefinitions from its reference class. Because class references
can be freely assigned between compatible classes, this meanefdiences are effectively

compatible with the classes thiainherits,aswell. This means that it is possible for some part of the
definitions for a referencedass to be noexistent Pascaline can detect and flag an erroafasccess

to amissingdefinition in a referenced object either at compile time or runtime.

When a program needs to determine ifdiénitionsit needs to access in an object exist can use a
special expression operator:

126

March 6,

THE LANGUAGE PASCALNE 2011

program p;
class x;
begin
end.
class v;
extends X;
begin
end.
var yr. reference to Xx;
begin { program main block }
new(yr);
{ code to set up and process yr }
if yi is x then {access members of x inherited iny }
end.
Theis operatoris trueif the referenced object either is the indidatkass, or is a class that inherits

from that class. Ieithercasejt meanghatall of the definitions from the class defined as the base of
the referencexist.

When a new member of a class is defined that has the same name as a membdrasftédueclass,

the original member of the inherited class is fs
class.

6.39.6 Overrides for objects

Just as static modules can, classes can override inherited procedutextods.

127

March 6,

2011 THE LANGUAGE PASCALNE

program p;
class x;

virtual procedure v;

begin

end;

begin { constructor for x }

end.

class z;

extends x;

override procedure v;

begin

end;

begin { constructor for z }

end.

begin { main block for p }

end.

Themaindifferencefor the use of overrides with objedtem the use of overrides with moduies
that theinstances of the original object keep their original procedamdfunctions,and only derived

classes have the procedure or function replaced. Static médwieshe original procedure or function
replaced for all callers.

Just as for a module, the origirdfinition of a procedure or functiotenbeaccessed by using the
inherited word-symbot

inherited y; { call the original definition of member procedure y }

Only one override can exist for the samethod inanobject. The inherited version of a method can
only be accessed within the object wheredherrideexists.

6.39.7 Self referencing

Within thecodethat makes up the object, its procedures, functions andasthaexit blocks, referring
to definitions within the object is done 8 anymodule,dynamicor static.However, an object

128

March 6,

THE LANGUAGE PASCALNE 2011

frequently needs to access tieéerence that defines access to it, as well. This is most coinrtios
casewherethe objectexistsin alist of objects, and idone via thevord-symbolself:

129

March 6, THE LANGUAGE PASCALNE

2011

program p;

I General purpose list class

class list;

type ref= reference to list; ! reference to type
var next: ref; ! next item link in list

I'Insert node to list at head

procedure insert(var root: ref);

begin
next := root; ! link this to next
root := self !link root to this
end;
I Index nextentry in list

procedure iterate;
begin
self :=next!go next entry
end;
I Remove node

procedure remove(var root: ref);

var Ip: ref;
begin
if self = root then root:=root.next!gap from top
else begin
Ip :=root; ! index top of list

while Ip.next <> self do Ip.iterate; ! find last entry
Ip.next := next ! gap from list

end;
next ;= nil ! clear link

130

March 6,

THE LANGUAGE PASCALNE 2011

end;
begin ! constructor
next:= nil !clear nextlink
end.
I'list of integer data values
class dlist;
extends list; | based on list class
type ref = reference to dlist; ! reference to type
var data: integer ;! datavalue

I Find a list entry by value

function find(value: integer): ref;
var |Ip: ref;
begin
Ip:= self ;! index here to search forward
if Ip<> nil do begin !the whole list is not nil
while (Ip.data <> value) and (Ip.next <> nil) do Ip.iterate;
if Ip.data <> value then Ip:= nil ! not found
end;
result Ip ! resulting in found value or nil
end;
begin ! constructor
data:= O !clear data value
end.

var mylist, Ip: dlist.ref; ! our data list
procedure newvalue(value: integer);

begin

131

March 6,
2011

new(Ip);

data := value;

Ip.insert(mylist)
end;

begin

THE LANGUAGE PASCALNE

I place some test values in alist

newvalue(123);
newvalue(42);

newvalue(1);

I Find an entry

Ip := mylist.find(42);

I And remove it

Ip.remove(root);
dispose(lp);

I'pri ntremaining list entries

writeIn('The list contains:'
Ip := mylist;

);

while not (p= nil) do begin

writeln('Value:' , Ip.data);

Ip.iterate
end

end.

self stands in for the reference that the object being operatecarsdgrom.

6.39.8 Constructors and destructors

If a constructor or constructor and destructor exists for a class, they are exeuenetthe object is
definingbtock,@rid wheh the objéc] issdispgoge dyf

createdbywew, or at t he
dispose,oratt he end of

t he

ol hej censtruciosis edeedted omew, gnd thé o ¢ k .

destructor is execetl ondispose. Just as for a static module, constructors givepportunity toset

up and tear down an object.

Whenan object has inherited classti® derived class must specifically call the base dasstructor
The derived class cannot access the members of the base class eoritructor is called:

132

March 6,

THE LANGUAGE PASCALNE 2011

program p;
class x(i: integer) ;
begin
end.

class y(c: char);

extends X;
begin
x(ord(c));

{ statements accessing members of x }
end.

var y i (6 a @nstance of y;
Xi(42): instance of x;

begin { program main block }
end.

The constructor of a derived class is the only place such an explicit constructor call can taKenplace
base class is called specifically by name with the constructor parameter list. Outside of the derived
class constructor, the base class parameter list is used as normal for classes.

The explicit call of base class constructors gives two importalitiesi

1. It allows the derived class to set up the parameters it needs for the base class.
2. It allows the derived class to have a different list of parameters than the base class.

Only the constructors of base classes are called explicitly. The destruzbedsautomatically, in the
reverse order of construction, when the objedisposed. When an object is torn down, the derived
class has the ability to deactivate itself before the class it is based on is deactivated.

6.39.9 Operator overloads in classes

Whenan operator overload occurs in a class, it can use the general form to refer to the specific object
at hand:

133

March 6,

2011 THE LANGUAGE PASCALNE

program p;
class complex ;

type ci = instance of complex;
var r,i:real;

operator +(var v, rv: ci);
begin

Iv.r ;= Iv.r+rv.r; ! add real part
Iv.i ;= Iv.i+rv.i ! add imaginary part

end;

begin !initializer for complex
end.

begin ! program main block
end.

Pascaline allows a short form where the left side of the operator always is the class of the execution
context:

134

program p;
class complex ;

type ci = instance of complex;
var r,i:real;

operator +(var rv: ci);
begin

r:=r+rv.r; ! add real part
i :=i+rv.i ! add imaginary part

end;
begin ! initializer for complex
end.
begin ! program main block
end.

THE LANGUAGE PASCALNE

March 6,
2011

That is, thdeftmost operand of the operator function parameters is left off. The result is that the left
side of the operator is performed in the context of the object on the left. The result is just as if the
present class was declared as the first parameter opénator function. For unary functions + and

no parameter is specified.

6.39.10 Derivation vs. compaosition

Pascaline supports new classes formed from old classes bydativation or composition

Derivation is a class that has another class as its base@tasposition is a class that includes an

instance of the class:

135

March 6,

2011 THE LANGUAGE PASCALNE

program p;
class base;

var i integer;

class composition;

var bi: instance of base;

var ci: instance of composition;
begin

ci.bi.i:=10
end.

Building classes by composition is a powerful technique, and sometimes is more appropriate than
building classes by derivation. Multiplleherencen Pascaline is not possible using derived classes,
but it can be done with composition.

6.39.11 Parallel classes

Jug as modules have different versions for parallel tasking, classes come in different forms to enable
tasking. The following classes are the functional equivalents of the module types:

process thread
monitor atom

channel liaison
share <none>

A thread class has no visible members at all. Its constructor starts and is executed within a new
thread. All members must be private:

136

March 6,

THE LANGUAGE PASCALNE 2011

program p;
uses mymonitor;
thread lighttask X
private

var a:integer ;

begin ! constructor for lighttask
a .= getdata;
putdata(a)

end.

begin ! main block

end.

A process module is limited to creating only a single parallel thread of execution within the program.
The thread class can create an unlimited number of threads.

Unlike aprocess, athread class can have a destructor. The destructor is executed in the context of
the thread. At the end of the destructor, the thread is terminated.

thread classes can use either monitor modules, or can use a special form of class knosto s the

137

March 6,
2011

THE LANGUAGE PASCALNE
program p;
atom fairlockc;

procedure get ; forward;
procedure put ; forward;

private
const maxque =255; { maximum number of queued entries }
type queptr = 0..maxque;

var released: semaphore;
inp, outp: queptr;

procedure incptr(var p: queptr);
begin
if p<maxque then p:=p+l else p:=0
end;
procedure get ;

var inps: 0..maxque;

begin
inps :=inp; { save the current queue position }
incptr(inp); { advance the input pointer }
while inps <> outp do wait(released);

end;

procedure put ;

begin
incptr(outp); { advance the output pointer }
signalone(released) { signal the release of the lock }
end;
begin
inp :=0; { clear input and output pointers }
outp:=0
end.
var lock : instance of fairlockc ; !create alock

138

March 6,

THE LANGUAGE PASCALNE 2011

thread printtask c;
private
begin { constructor for printtaskc }
while true do begin
lock.get; ! aquire lock to output
writeln(o6l am a threadd); I print
lock.put ! release lock
end
end.
var t. instance of printtaskc :
begin { main block }
while true do begin
lock.get; ! aquire lock to output
writeln(ol am the main programob) ; ! print
lock.put ! release lock
end

end.

Note: this program i mplements a ffethatpridisaddr der 0 p
whole lines are not atomic in Pascalifiee action of the program is to alternately print whole lines
from the main and the subthread.

Anatomcannot have variables in its publicionsecti on.
via methods.

Each of the methods of an at@oquiresa lock specific to the atom before performing its work.
Semaphoreand signals are available to an atom. Thus, it can serve asedvgeen for thread classes,
processes, and the main program.

A liaison goes further still than asmtom, and allows only propertide be present in its interface
section.

139

March 6,

2011 THE LANGUAGE PASCALNE

program p;
liason stringdictionary ;
const bufmax = 100;

type cmadval = (none, writestring, readstring);
cmdrec = record

idlen : 1..buf max;

idstr : packed array [1..bufmax];

strlen: 1..bufmax;

strdat : packed array [1..bufmax]
end;

property command: cmdval ; forward ;

property params: cmdrec; forward ;
private
type string: packed array of char;
strptr: ~strrec;
strrec: record

next: strptr;
name: pstring; ! name of string

data: pstring I data contained in string
end;
var strist: strptr; I'list of current string entries
p: strptr; ! pointer to iterate list
cr: cmdrec; ! this is the class global copy of the params

I Compare strings with length
function strcmp(len: integer; var a, b: string): boolean;
var r: boolean;
begin
r:=true; ! set default equal
if len <> max(b) then
r:=false ! return false if lengths unequal

else for i:=1 to len do if afi]<> Dbl then r:=false;

result r! return compare result

140

end;

THE LANGUAGE PASCALNE

I Operate the command interface

property command: commandval;

begin !read definition
command := none! readis a meaningless request here
end;
var i: 1..bufmax;
begin ! write definition
if command = writestring then begin ! write string request
new(p); ! get a new string entry
new(p ~.name, cr.idle n); ! create identifier string
new(p”.data, cr.strlen); ! create data string
I copy name to string entry
for i:=1tocr.idlen do p”.nameli] := idstr[i];
I copy data to a string
for i:=1 to cr.strlen do p”.data [i] := strdat [i]
p”.next := strist; ! push to string list
strlst := p
end else if commandval = readstr ing then begin
I read string request
for i:=1 to bufmax do cr . i dstr [i] =
p := strist; ! find string in list
while p <>nil do begin
if strcmp(cr.idlen, cr.idstr, p*.name) then begin
I found, copy data back to transfer record
cr.idlen := max(p”~.name);
fori:=1 to max(p*.name) do cr.idstr[i] := p~.name]i]
end;
p := p~.next ! next string entry
end
end;

March 6,

2011

cl ear

141

r

e !

March 6,

2011 THE LANGUAGE PASCALNE

I operate the parameters
property params: cmdrec;
begin ! read definition
params = cr ! copy local definition to client
end;
begin ! write definition
cr := params ! copy client definition to local
end;
begin ! stringdictionary constructor

strist := nil ! clear string list

end;
begin ! stringdictionary destructor
I dispose of string list
while strlst <> nil do begin
p := strist; I gap top entry from list
strist ;= strist*.next;
dispose(p”.name); ! dispose of string name
dispose(p”.data); ! dispose of string data
end
end.
var strdic: instance of stringdictionary; ! instantiate dictionary

cr: cmdrec; ! our copy of the parameter record

procedure putstr(var len: integer; var d, s: string);

begin

len := max(s); ! place length

for i:=1 to len do di]:=sJi]! copy string
end;
begin

142

March 6,

THE LANGUAGE PASCALNE 2011

I'add a string to the dictionary

putstr(cr.idlen, cr.idstr, Ouser
putstr(cr.strlen, c¢cr.strdat, 06Jo
strdic.params := cr; ! set up string data

strdic. command := writestring; ! write the string record

I find existing record

putstr(cr.idl en, csre.riddast tard,) ;6 u
strdic.params := cr; ! set up string data
strdic.command := readstring; ! write the string record

I now recovered data is in record, or is blank if none found

end.

In this example, named strings are transfereedss an interfacgossibly to a remote process or
processorThe client program sets up a parameter record fdigisenbased server and then
commands the server to perform it.

The example illustrates many of the challenges of property based desidiaisdrecannot eport the
definitions in the parameter record, and that property is even sealed from the other methods in the
samdiaison That is why the only job of thearams property is to export the read or written data to
theliaisonitself. The reward for endurirtpe difficulties of property based design is programs that can
be modularized across multiple processgerhaps in distant locations, and also the ability of
Pascaline to unify accesses to software, servers, and low level hardware under a single model.

Notes:

1. The rule thatccesses external to the property activate the read or write blocks of the property
mean that other properties in the same surrounding block activate each other.

2. Because properties can be structured tygeg amount of data cdieen aranged as a single
property.

3. A structured property implies nothing about the accesses to its substructure. It is only
meaningfulas a whole structure assignment.

There is no class based version share module. Since a share module contains no variathlese
would be no point to an instantiation of such a class.

143

Westond) ;

March 6,

THE LANGUAGE PASCALNE 2011

A Annex A: Collected syntax

actualparameter = expression | variahlecess | procedurdentifier | functionidentifier .
actuatparametetist = '(' actualparameter {‘,actualparameter } "' .
addingoperator = '+' }"| 'or' | 'xor" .

apostropheémage = " .

arraytype = "array' [dimensieapecifier] 'of' componeripe .
arrayvalueconstructor = 'array' valseonstructor { ',' valueonstructor } 'end' .
arrayvariable = variableaccess .

assignmenstatement = (variablaccess | functicidentifier) :=" expression .
attribute = 'overload' |tatic’ | 'virtual' | 'override’

basetype = ordinattype .

binarydigit="0"|'1"|"_".

binary-digit-sequence = octaligit { binary-digit }

binaryinteger = '%' binardigit-sequence .

block = { declaration } ['private’ { declaration }] statemepdrt [;' statemerpart | .
Booleanexpression = expression .

buffer-variable = filevariabke " .

caseconstant = constant .

caseconstardrange = caseonstant ['..' caseonstant | .

caseconstardist = caseconstanrange { ', caseonstantange } .

caseindex = expression .

caselist-element = cashst-statement | cadest-default .

caselist-default = 'else’ statement .

caselist-statemat = caseconstardist ":' statement .

casestatement = 'case’ cagglex 'of' casdist-element ';' caselist-element } [;'] 'end' .

charactesstring = ™ stringelement { stringelement } ™.

145

March 6,

2011 THE LANGUAGE PASCALNE

classdeclaration {'class6 t hr ea d|6 ¢ | dnitifeofdlassparametefist] ;' ['extends’
classname ;' olock "." .

classname = qualifieddentifier .

classparametet i st =p adnM @dmetl eampa{r abmed ecr|l a}s s6) 6

classpar ameter = [-l 6¢t eidedifiet.t ypenti fier

componentype = typedenoter .

componentvariable = indexedariable | fielddesignator .

compoundstatement = 'begiftry-end]statemensequencg &ér esul t'éndexpr essi on]
conditionalstatement = istatement | casgtatement | trgtatement .

constant = [sign] constatgrm { addingoperator constasierm } .

constandefinition = identifier '=" constant .

constantéfinition-part = [‘const’ constatefinition ';'{ constantdefinition ;' }] .

constanffactor = '(* constant ')’ | 'not' constdactor | charactestring | constaAtentifier | unsigned
integer .

constardidentifier = qualifiedidentifier .

constarterm = constantactor { multiplying-operator constasfactor } .
controtvariable = entirevariable .

decimalinteger = digitsequence .

declaration = labetfleclaratiorpart | constandefinition-part |type-definition-part | variable
declaratiorpart [fixed-declaratiorpart | procedurdeclaration ;' function-declaration ;'
| operatord e c | ar |gptopedyd e 6| ar ati on 6; 0

digit='0"|"1"|'2"|'3"|'4"|'5'|'6"|'7"|'8'$'Q: 6
digit-sequence = digit { digi} .

dimensionspecifier = indexspecifier | rangspecifier .
directive = lette { letter | digit } .

domaintype = typeidentifier .

elsepart = 'else’ statement .

emptystatement = .

entirevariable = variabledentifier | 'self' .

146

THE LANGUAGE PASCALNE March 8,

2011
enumeratedype = '(‘ identifiedist)" .
exceptseries = exceggpecifier{ exceptspecifier } [xceptunconditional] .
excepts peci fi er =idedtiben{0 0e, x6c eghantificopr é ome pt & st at ement

exceptuncondi ti onal = O0exceptd statement
expression = simptexpression [relationalperator simplexpression | .

factor = variableaccess | unsignembnstant | functiowlesignator fype-identifier '(' expression ')' | set
constructor |(* expression ')' | 'not' factor .

field-designator = recordariable "' fieldspecifier | fielddesignatoisidentifier .
field-designatoiidentifier = qualifiedidentifier .

field-identifier = qualifiedidentifier .

field-list = [(fixed-part [;' variardpart] | variardpart) [;']] .

field-specifier = fieldidentifier .

file-type = 'file' 'of' componertype .

file-variable= variableaccess .

final-value = expression .

fixed-declaration = identifiefist ":' typedenoter '=' value€onstructor .
fixed-declaratiorpart = ['fixed' fixeddeclaration '{ fixed-declaration ;' }] .
fixed-part = recoresection { ;' recoresedion } .

for-statement = 'for' contrelariable ":=" initialvalue ('to' | ‘'downto'final-value 'do’ statement .
formaltidentifier = identifier.

formalparametetist = ‘(' formalparametesectior{ ';' formal-parametessection } *)' .

formalparametesection = valugparametesspecification| variableparametesspecification| view
parametesspecification| outparametesspecification proceduraparametesspecification| functionat
parametespecification .

fractionatpart = digitsequence .
function-block = block .

function-declaration = functioieading ';'directivefunctiorridentification *;' functiorblock |
functionheading ;' functiotblock .

function-designator = functioidentifier [actualparametetist | .

147

March 6,
2011

THE LANGUAGE PASCALNE

functionheading = attributdunction'formatidentifier [formalparametetist] ' resulttype .
functionridentification = attribute 'function' identifier .

function-identifier = qualifiedidentifier .

functionalparametespecification = functiomheading .

goto-statement = 'gottéabel .
hexdigit="0"]"1"|'2"'|'3"|'4"|'5'|'6"|'7'|'8"|'9"|'a"|'b"|'c'|'d|'e|'f|"".
hexdigit-sequence = hedigit { hex-digit } .

hexinteger = '$' hexdigit-sequence .

identified-variable = pointewariable " .

identifier = letter | '_' { letter | digit | '_'}.

identifier-list = identifier { '," identifier } .

if-statement = 'if' Booleaaxpression 'then' statement [efsat] .
indexexpression = expression .

indexspecifier = '[" indexype {'," indextype} T .

indextype = ordinaltype .

indexedvariable = arrayvariable T indexexpressior ', index-expression } 7' .
initial-value = expression.

instancetype = 'instance' '0tlassname .

label = digitsequence | identifier .

labetdeclaratiorpart= ['label' label {,' label } ;"] .

letter="a'|'b"|'c'| 'd'
IZI | IAI | IBI | ICI | IDI | 1
XY 2.

Ie| lfl | lgl | lhl | lil | IJ'I | lkllmrl " lnl | lol | Ipl | lql | lrl | ISI | ltl | lul | l\lll

I W' [yx] |
IFI | IGI | IHI I IUI ||K| | ILI | IMI | INI | lol | |Pl | IQI | IRI | lsl | ITI 1 |

I I
El Ul Wll

link-specification = 'uses' | 'joins' .
memberdesignator = expression [.."' expression] .
module = modulédeading ;' modukblock "." .

moduleblock = usesdeclaratiorpart { moduledeclaration }| 'private' { moduledeclaration }]
statemenpart[;' statemenpart] .

moduledeclaration = declaratigrclassdeclaration .

148

March 6,
2011

THE LANGUAGE PASCALNE
moduleheading = modultype identifier ['(' modulgparametetist)'] .
modulename = identifier .
moduleparametetist = identifierlist .
moduletype = 'program’ | 'module’ | ‘process' | 'monitor’ | 'share’ .
multiplying-operator ="' | '/* | 'div' | 'mod' | 'and" .
new-ordinaltype = enumeratetype | subrangégype .
new-pointertype = 'N' domairtype .
newsstructuredtype = ['packed'] unpackedructureetype .
newtype = newordinattype | newstructureetype | newpointertype .
octakdigit="'0"|'1"|'2"|'3"|'4"|'5"|'6"|'7"|"_".
octatdigit-sequence: octaldigit { octal-digit } .
octatinteger = '&' octadigit-sequence .
operatordeclaration = operatadentifier operatoh e adi ng -fype].6: 6 resul t
operatorheading = attribute 'procedufetmalidentifier [formalparametetist] .

operatofident i fi er ® ¢nottd® | &+®® | &divé | 6dmoddbd | ban
6ind | 6iso6 | o6:=0

ordinattype = newordinattype | ordinatype-identifier .

ordinattype-identifier = typeidentifier .

out-parametesspecificaion = ‘out identifierlist ":' typeidentifier .

pointertype = newpointertype | pointeitype-identifier .

pointertype-identifier = typeidentifier .

pointervariable = variableaccess .

procedurajparametespecification = proceduseeading .
procedue-andfunction-declaratiorpart = { (proceduraleclaratior| functiondeclaration) ;' } .
procedureblock = block .

proceduredeclaration = proceduteeading ;' directive | proceduidentification ';' procedurblock |
procedureheading ';' proceduselock .

procedureheading = attribute 'procedufermaltidentifier [formalparametetist] .

149

March 6,
2011

THE LANGUAGE PASCALNE
procedurdadentification = attribute 'procedure’ identifier .
procedureadentifier = qualifiedidentifier .

procedurestatement = procedwidentifier ([actu¶metetist | | readparametetist | readln
parametetist | write-parametetist | writelnparametetist) .

propertyidentifier =qualifiedidentifier .

propertydeclaratiorr attributeproperty-i d e nt i f idenoterdg :66brdteyapdke 6| 6 c Wr Dt é
qualifiedidentifier = identifier { "." identifier } .

rangespecifier = unsignethteger {',' unsignedhteger } .

readblock = block .

readelement = variablaccess ¢haractesstring.

readparametetist = '(' [file-variable ',' readelement ',' readelement "' .
readinparametetist = ['(" (file-variable readelemenf) {',' readelemeng ")'] .
reaktype-identifier = typeidentifier .

recordsection = identifiedist ' typedenoter .

recordtype="record fieldlist 'end" .

recordvalueconstructor = 'record’ valusonstructor { ', valueonstructor }end' .
recordvariable = variableaccess .

recordvariablelist = recordvariable { ', recorévariable } .

referenceype = 'reference’ 'to'@ssname .

relationatoperator = '=" | '<> | '<'| >'| '<="| >="|in"| is'.

repeatstatement = ‘repeat’ statemertjuence 'until' Booleaxpression .
repetitivestatement = repeatatement | whilstatement | festatement .
resulttype = simpé-type-identifier | pointettype-identifier .

scalefactor = [sign] digitsequence .

setconstructor = ' [membettesignator {',' membedesignator } 17" .

settype = 'set' 'of' basgpe .

sign ="+'[-".

signedinteger = [sign] unsignethteger .
150

March 6,
2011

THE LANGUAGE PASCALNE
signednumber = signedhteger | signedeal .
signedreal = [sign] unsignedeal .
simpleexpression = [sign] term { addiraperator term } .
simplestatement = empitgtatement | assignmesiatement procedurestatement | gotstatement .
simpletype = ordinaltype | reatype-identifier .
simpletype-identifier = typeidentifier .

Specia‘lsymbol - I+l |_l | ! | I/l | I:I | I<l | I>I | I[I | I]I | I.l’lll I:l | I;I | INT | l(l I I)I | l<>l | I<:I | I>:l | I:j_T:I” '(.I
|')' '@ | wordsymbol .

statement = [label ' :'] (simplatement | structuredfatement) .
statemenpart = compoundtatement .

statemensequence = statement { ;' statement } .

stringcharacter = onef-a-setof-implementatiordefinedcharacters .
stringelement = apostropHenage | stringcharacter .

structuredstatement = compourgtatement | conditionatatement repetitivestatement | with
statement .

structuredtype = newstructureetype | structuredype-identifier .
structuredtype-identifier = typeidentifier .

subrangdype = constant '.." constant .

tagfield = identifier .

tagtype = ordinaltype-identifier .

term = factor { multiplyingoperator factor }.

try-end= (exceptseries | excepinconditional) 'else' statement] .
try-statemat = 'try'(statemensequenchg try-end.

type-definition = identifier '=' typaedenoter .

type-definition-part = ['type' typalefinition ' ;' { typedefinition ;' }] .
type-denoter = typedentifier | newtype .

type-identifier = qualifiedidentifier .

unpackesstructureetype = arraytype | recoretype | setype | filetype |referencetype| instanceype

151

March 6,
2011

THE LANGUAGE PASCALNE

unsignedconstant = unsignedumber | charactestring | constanidentifier | 'nil’ .

unsignednteger = decimainteger | hexnteger | octainteger | binanmnteger .

unsigneenumber = unsignethteger | unsignedeal .

unsigneereal = digitsequence ".' fractionglart ['e' scaldactor]| digit-sequence 'e' scalactor .

usesdeclaratiorpart= [link-specification modul@ame {'," modulename }] .

valueconstructor = arrayalue-constructor | recordalue-constructor onstant .

valueparametesspecification = identifietist "' typeidentifier .

variableaccess= entirevariable | componentariable | identifiedszariable| buffervariable .

variabledeclaration = identifietist[6 (6 expr es s i o:htypddenbter6 expressi on

variabledeclaratioppart = ['var' variableleclaration ';{ variable-dechration ';' }] .

variableidentifier = qualifiedidentifier .

variableparametespecification = 'var' identifielist "' typeidentifier .

variant = caseonstardist ":' ‘(" fieldHlist *)" .

variantpart = 'case' variargtelector 'of' variant { ;' véant } .

variantselector = [tadield "'] tagtype .

view-parametesspecification = 'view' identifielist "' typeidentifier .

while-statement = 'while' Booleaxpression 'do’ statement .

with-statement = 'with' recordariablelist 'do’ statement

word-symbol ="'and' | ‘array' | 'begin’ | ‘case’ | ‘const' | 'div' [ddevfto’ | ‘'else’ | 'end’ | file' | 'for" |
'function’ | 'goto’ jf' | 'in' | 'label' | 'mod’ | 'nil' | 'not’ | 'of' | ‘oipécked' | 'procedure’ |
‘program’ | 'record'fiépeat’ | 'set"then’ | 'to’ | ‘type' | ‘'until' | 'var' | ‘'while' | ‘with' |
‘forward' | ‘'module’ | 'uses' | 'private’ | 'external’ | 'vigiwef' | ‘process’ | ‘'monitor’ |
'share’ | 'class' | ‘isojverload’ | 'override' | 'reference | 'joiristdtic’ | 'inherited’ | 'self' |
'virtual'| 'try' | 'except' | 'extendsbn' | result' | 'operator' | 'instarjice' 6 st ar t 6

write-block = block .

write-parameter = expression ["' expression [' expression]] .

write-parametetist = '(" [file-variable ',] writeparametef ',' write-parameter })" .

writeln-parametetist = ['(" (file-variable | writeparameter) {'," writgparameter } ')'] .

152

March 6,
2011

THE LANGUAGE PASCALNE
Notes:

1. Thesyntax BNFs do not dictate semantics. A program that is perfectly valid accordirg to
above syntax may be invalid semantically.

153

B Annex B: Standard exceptions

Normally, exceptions are either declared by the program or imported from external modules. However,

THE LANGUAGE PASCALNE

March 6,

2011

several exceptions exist that are generated bsubport libraries used to implement the base

Pascaline language. These exceptions are all declared at the system level in Pascaline, and any

program can handle such exceptions.

The following are a list of standard exceptions. If an implementation doesaatparticular

exception, it is recommended that the exception name be provided, even if the exception will never be

thrown. This will irsure software compatibility fapplications that reference the exceptions here.

ValueOutOfRange Value out of range
ArrayLengthMatch Array lengths do not match
CaseValueNotFound Case value not found
ZeroDivide Zero divide

InvalidOperand

Invalid Operand

NilPointerDereference

Nil pointer dereference

RealOverflow

Real overflow.

RealUnderflow

Real underflow.

RealProcessingFault

Real processing fault.

TagValueNotActive

Tag value for enclosing variant
not active.

TooManyFiles

Too many files active.

FilelsOpen

File is open, should be closed.

FileAlreadyNamed

Attempt to name a file already
named.

FileNotOpen

File is closed, should be open.

FileModelncorrect

File in incorrect mode.

InvalidFieldSpecification

Invalid field specification.

InvalidRealNumber

Invalid real number.

InvalidFractionSpecification

Invalid fraction specification;

InvalidintegerFormat

Invalid integer format

IntegerValueOverflow

Integer value overflow.

InvalidRealFormat

Invalid real format.

EndOfFile

End of file encountered.

InvalidFilePosition

Invalid file position specified.

FilenameToolLong

The filename passed to the system
was too long.

FileOpenFail Unable to open a file.

FileSlzeFail Unable to find size of file.

FileNotOpen An operation was attempted on a
closed file.

FileCloseFail Unable to close a file.

FileReadFail Unable to read a file.

FileWriteFail Unable to write a file.

155

March 6,
2011

THE LANGUAGE PASCALNE

FilePositionFalil

File position fails.

FileDeleteFail

File delete fails.

FileNameChangeFail

File name change fails.

SpaceAllocateFail

Dynamic space allocation fails.

SpaceReleaseFail

Dynamic space release fails.

SpaceAllocateNegative

Attempt to allocate negative
space.

CannotPerformSpecial

Cannot perform operation on
special file.

CommandLineToolLong

Command line too long.

ReadPastEOF

Read attempted past file EOF.

FileTransferLengthZero

Attempted file transfer of zero
length.

FileSizeToolLarge

File size is too large to return.

FilenameEmpty

Filename is empty.

CannotOpenStandard

Cannot open standard I/O file.

TooManyTemporaryFiles

Too many temporary files in use.

InvalidFilePosition

Invalid file position specified.

InputBufferOverflow

Input buffer overflows.

TooManyThreads Maximum number of threads
exceeded.
CannotStartThread Cannot start new thread
InvalidThreadHandle Invalid thread handle
CannotStopThread Cannot stop thread

TooManylntertaskLocks

Maximum number of interthread
locks exceeded.

InvalidLockHandle

Invalid interthread lock handle

LockSequenceFail

Invalid intertask lock sequence
detected

TooManySignals

Too many intertask signals active
at once

CannotCreateSignal

Cannot create new intertask
signal

InvalidSignalHandle

Invalid intertask signal handle

CannotDeleteSignal

Cannot delete intertask signal

CannotSendSignal

Cannot send intertask signal

WaitForSignalFail

Failure waiting for intertask
signal

If an exception occurs thatti®t one of the above, it goes to the general exception.

If a program handles a system exception, but does not correct the problem, the program may simply
fail later in the run, perhaps with a different exception. It is not advised to simply capturemand th

ignore exceptions.

156

March 6,

THE LANGUAGE PASCALNE 2011

The implementation typically connects the list of standard exceptions to equivalent exceptns in
implementation libraries. In this case, the complete set of implementation specific exceptions can be
utilized by directly referenag the exceptions in the implementation libraries.

157

March 6,

THE LANGUAGE PASCALNE 2011

C Annex C: Undefined program parameter binding

To further the idea of prograheademparameter binding to external entities, thimexgives a
suggested method of such bindings.

Program parameters are divided into three classes:

1. Predefined parameters, suchimgut, output, error, list andcommand.
2. Undefined text files.
3. Other than text type parameters.

Pascalinalefinesbindings for the first category, and tlisnexdetails astandard methodology for
binding the second. The third category is teftheimplementation, but the requirement exists for
there to be an error if these parameters cannot be bound correctly (see ISO 7185 6.10 "Programs").

The suggested binding method fektt file program parameters wittamesotherthanthe predefined
names is called "command parameter binding". For eachpsagham parameter, reading from left to
right in the program headeazachfile is connected to a parameter of the command usedit@izcthe
program as follows:

1. Afilename is parsed from the command file.
2. The filename parsed &ssignedto the parameter file.

The equialent code to do this:

procedure get_command_filename(var f: text);

var fn: packed array maxlin of char;

begin
for i:=1 to 100 do fn:='"; {clear filename }
{ skip leading spaces }
while (command® ="") and not eoln(command) do get(command);

{ get file characters }
i := 1, { set first character position }
while (command®*<> ' ') and not eoln (command) do begin

fn[i] := command”;
get(command);
=i+l

end;
assign(f, fn) { set filename }

end;

Wheremaxlin is the maximum string length, andsaming thatommand appears as a header
parameter.

159

March 6,

2011 THE LANGUAGE PASCALNE

Theresult is that the nexeset or rewrite applied to the file will causthe file, with the name
specified in the command fileg be activated Notethatthis method does not allow the file to be
closed, then reopened, since tthese procedure is defined asmovingthe name of the filécom the
file variable

The side effect of parsing the aat file name from the commatrfite is thatthe filename is removed
from thecommand file, since the current read positiohthe file is skipgd.

The point at which the above bingdinf the program parametersaommandile filenamess before

the module that contains the program parameters is activated. This means that further reads from the
command file (if itappearsn theheaderyeaddatathatappears after any text file names have been
parsed and skipped.

160

March 6,

THE LANGUAGE PASCALNE 2011

D Annex D: Character sets

Like ISO 7185Pascal, Pascaline has no standard character set represelmdiviohual charactergan
beanysize, and the mapping of atacter numerical values tharacteglyphsor figures is entirely
system dependent.

The character set used must provide all of the charactgrsword-symbok andspecal symbols in
Pascalinewith the addition of a space.

Thisannexdescribes two different character sets that are commonly useBagtaline, the ISO
88591 and ISO 10646 sets. For the purposes of this annex, it is assumed that users of alternative ISO
8859 code pages will be migrating to the ISO 10646 standard€kme)b

D.1 ISO 8859-1 Character Set Encodings

Pascalinatself uses only the lower pad#28)1SO 88591 codes which are common to all ISO 8859
pages, and only uses a subset of those.

The ISO 88591 characters require a set of 256 elemgois32 bytes}o be ableto representhe
declaration

set of char;

D.2 ISO 10646 Character Set Encodings
The ISO 10646 or Unicode character standard specifies up to 32 bits of chaahmer

Variant ' " Set of char
requirement

UTF 8 8 32 bytes
UTF 16 16 8192 bytes
UTF 32 32 536870912 bytes

The exact format of a character under the Unicode system is system deperdemndnlyvaries
accordingo if the machine implemented on arranges its biytega most significant to least (so called
"big endian"), or fronteastsignificant to most (so called "little endian").

Unicodeuses the first 0 to 127 character values to represent the ASCII (@4f9@haracter set. It
uses the first 0 to 255 values to represent the-88&9atin-1 character set. Unicode also indes all
of the other parts of th&0O 8859code pages in higher wad codes.

D.3 Unicode text file I/O

Whenconsidering Unicode formats, it is necessary to consider both the integnadry format, and
the form as written and read from Pascal text fileshe case of Unicode, they are not necessarily the
same.

Thereareseverain-file possible text representations for Unicode. The roostmon are:

161

March 6, THE LANGUAGE PASCALNE

2011

Name ~Bits - Endian mode
UTF 8 8 None

UTF 16 16 Big or little endian
UTF 32 32 Big or little endian

Although Unicode represents up to 32 bits of character code informiatimpossibleto represent all
of these codes in either the UBFor UTF16 formatsdue to their use of escapes.

When big and little endian modes are considered, there are aftptasiblecombinations of 5
different unique formats.

Thereis noruntime method defined in standard Pascaline to set or switch between input and output
text formats. Such selection is usuglrformedoy a compiletime changethatmay include special
libraries, compiler options, @ome combination.

The '"Pascalingnormal” or suggested default fornfat text file 1/0, is UTF8. UTF8 has the
following special advantages:

1. Itis compact. It represents the most common characters in the fewest radimiter

2. Itis downward compatible with ASCII or ISO 646. Whetesxt file consistsentirely of ASCII
characters, the file will be identical to an ASCII file.

3. It does not havanyendian mode.

To be fair, UTF8 also has disadvantages:

1. Whenrepresentindiles whosecontents are mainly outside th&85 codeange, it may
actually increase the net size of the text file.

2. It moves the ISO 885% 128255 code range characters outsidéheB bit range, making text
files containing such characters possibly larged dfuscates the representation of such
characters

Useof UTF-8 makes it possible for Pascaline compilers that allow both Uneod¢SO 8859 support
to switch character set modes and still keep the saxnéle format.

D.4 Use of different character sets

Pagaline is designed to use only one character set at a time. There is mosystem to represent
more than one character set type at onceta®witchbetweercharacteset types at runtime. The
configuration for character setdene as a compilentie option.

162

March 6,

THE LANGUAGE PASCALNE 2011

E Annex E: Character escapes

Pascalinelike ISO 7185Pascaldoes not specify a particular character set. Howdvennmost

common implementatins of character sets, d&0 885931, andUnicodewith representations from

ISO 10646. All of these charactendes have ASCII as a subset. Not required, but suggested for
standard Pascalinmplementationgrecharacter escape sequences. The purpose of a character escape
sequence is to allow accessan-printablecharactersalsoknownas"control charactersWithin these
character sets. Additionally, there maydb@racters that, while they are printalgi@notbe

representeth programsource without a particular font or character set loaded into the host operating
system. In this case, character escapes allow access to these character by character code number.

Theappearancef anescape withinacharact st ri ng i s\0 i mhda rcad teer .b yF d lhleo \
ddcharacter is one of:

1. <number>
2. <controktidentifier>
3. <char>

The last construct simply means that the meaaoframy characterincluding backslastitself, can be
"forced" by prefacing it with a backslash. The backslash itself must appear via a "backslash image" of
aa

The <number> can be any valid charaseguence codéligh quality Pascalinemplementationsvill
allow '$', '&' or '%' radix marked numbers to appear dftetackslash character. Example

6This is 8%dad ne

The digits that constitute the character are limited by radix and number of Tigitss, any digit
outside of the radix of the number will terminate éseape sequence. For example:

6The charact\@o0il85b6

Gives an octal character escape®fl' " , foll owed ,begaudsSlisdbeyant theroatalit er 6 8 0
radix.

Similarly, only as many digits as are needed to form a character in the aireeatter set of the
compiler are used:

Base ISO 8859 -1 UNICODE 16 bit UNICODE 32 bit |
Decimal 3 digits 5 digits - 10 digits

Octal 3 digits 6 digits 11 digits

Hexadecimal 2 digits 4 digits 8 digits

Binary 8 digits 16 digits 32 digits

So for example:

6The cha$0alOc4t5edr i s :

163

March 6,

2011 THE LANGUAGE PASCALNE

is not the character for $45, but the character value $00 followed bidhecters "45". Leading zeros
are not discarded in numbers.

It is possible for the@scape sequence to belaguous. In this case, the batdsh character must also
be used as a terminator:

0The nuwbveo i s:
Is ambiguous if the desired string is Themwer i s ' f ol | owsa@ndteal:y ' 12' and
0The nu$Oér i s:

Controlidentifiers give easy acss to control codes in the ISO 88b8haracter sefor ISO 88591,
they are:

164

THE LANGUAGE PASCALNE

March 6,
2011

Identifier Meaning |
NUL Null character

SOH Start of Header

STX Start of Text

ETX End of Text

EOT End of Transmission
ENQ Enquiry

ACK Acknowledgment
BEL Bell

BS Backspace

HT Horizontal Tab

LF Line feed

VT Vertical Tab

FF Form feed

CR Carriage return[h]

SO Shift Out

Sl Shift In

DLE Data Link Escape
DC1, XON Device Control 1

DC2 Device Control 2
DC3, XOFF Device Control 3

DC4 Device Control 4

NAK Negative Acknowledgement
SYN Synchronous Idle
ETB End of Trans. Block
CAN Cancel

EM End of Medium

SUB Substitute

ESC Escape

FS File Separator

GS Group Separator

RS Record Separator

us Unit Separator

DEL Delete

PAD Padding Character
HOP High Octet Preset
BPH Break Permitted Here
NBH No Break Here

IND Index

NEL Next Line

SSA Start of Selected Area
ESA End of Selected Area
HTS Character Tabulation Set
HTJ Character Tabulation with

Justification

165

March 6, THE LANGUAGE PASCALNE

2011

VTS Line Tabulation Set

PLD Partial Line Forward

PLU Partial Line Backward

RI Reverse Line Feed

SS2 Single Shift 2

SS3 Single Shift 3

DCS Device Control String

PU1 Private Use 1

PU2 Private Use 2

STS Set Transmit State

CCH Cancel Character

MW Message waiting

SPA Start of Guarded Area

EPA End of Guarded Area

SOS Start of String

SGCI Single Graphic Character
Introducer

SCI Single Character Introducer

CSl Control Sequence Introducer

ST String Terminator

0oSsC Operating System Command

PM Privacy Message

APC Application Program Command

NBSP No Break Space

So the sequence can appear:

6 Wel c\cmed

If theunderlyingimplementatiorof Pascaline is not ISO 8889 then the contrainnemonics would be
different. In addition, there may be other control identiféBned for a particular implementation or
character set.

OHIi thdebk, georged

Theuse of character escapes causes a compatibility issuES@Itii185 Pascaln ISO 7185 Pascal
the character string:

OHIi thgeerged

Would include the backslash, wieas a Pascaline implementation would removédé#uoislashFor
thisreasonstandard comping Pascaline implementations mbsive a flag that enables the use of
character escapes that can be turedr off to enable normal treatment of programs. Sisse 7185
Pascalequires thatny Pascaline implementation have an option that will regtieéhput language
to strict ISO 7185, the character escape option must also be automagtatiyoff by the ISO 7185
compatibility flag. The reason that theachcter escapaptionshouldbea separate option, and not
simply tied to the ISO 718Mag, is that it would then be impossible to have B@5complying

166

March 6,

THE LANGUAGE PASCALNE 2011

programswnork with Pascaline full language mode enabled. This would be against thbaule
Pascalie is, or can be, a completely upward compatible supafrstndard ISO 7185 Pascal.

167

March 6,

THE LANGUAGE PASCALNE 2011

F Annex F: Overview of standard libraries and modularity

In theannexeghat follow, several standard libraries arffoducedTheintroduction ofstandard
libraries into a standard is based on the following itleas:

1. Pascaline has sufficieaktendibilitythat majomewapplicationscanbe coveredwith
extensiommodules using the standard language, and not chantieshiase language.

2. Atypical Pascaline program is going to have library dependencies in adtitlanguage
dependencies.

The modules in the standard set are divided into two basic types:

1. Basicextensionsised by programs regardless of extra devices or capakiiédable.
2. Extensimsthat introduce new device capabilities.

The followingextensiorlibraries will be shown in this standard:

AnnexG: Servicedibrary - Directory lists, file name handling, paths, environment, program
execution, date and timgternationalization.

AnnexH: Stringlibrary - String routines, leernate base I/O, formatting.

Annex L Math libraryi Various floating point matkxtensionsand utilities.

AnnexJ: Terminal library- Output totext surface, advanced input.

AnnexK: Graphicallibrary - Output tographical surface.

AnnexL: Windowing library- Managenent of multiple windows.

AnnexM: Widget library- Buttons lists, dialogsrelevantto screen basegarograms.

AnnexN: Sound library- Midi and wave input and output.

AnnexO: networklibrary - Network programaccess.

F.1 Basic Language Support

F.1.1 services

services contains a series of operating system support extensions such as filename/path handling,
directory listings, time and date, environment strings, executing other programs, and similar functions.

F.1.2 strings

Implements common string handling routines, dynamic string management, ncomecsiorto and
from a string, advanced numeric formatting to and from both strings and files, string search and
replace, and similar functions.

F.2 Advanced User I/O and Presentation Management

The advanced user /O modules are a family that implement a series of advancing levels that match
advancing levels in 1/O capabilities, including:

169

March 6,

2011 THE LANGUAGE PASCALNE

Terminal character presentation

Gives the ability to place characters on a fpidatypical fixed size character display.
Graphical presentation

Gives the ability to draw figures, and place characters with proportional fonts.
Window management

Divides the display surface into a series of independent windows.
Widget placement and managerhe

Gives a library of common controls, layered components and dialogs.

All of the supported display modes are upward compatible, and fixed size character presentation is
always available in any graphic mode. The result is that there is two possiblegstackla of
presentation:

Terminal - > Single fixed display - > Windowed display - > Widgets
Graphical - > Single fixed display - > Windowed display - > Widgets

The terminal, graphical, window management and widget libraries are a set of littrariegplement
a series of screen surface operating standards in an ascending sequence of capability:

serial 1/0 - 1/O of single charac ters with line orientation and
| blocking on input.
+-- Terminal I/O - l/Otoan X -Y fi xed font surface with arbitr ary
| posi tioning and event driven 1/0O.
+-- Graphical I/O - /O to arbitrary pixel locations and multiple
| figure types.
+emen Multiple windows - 1/O to multiple windows.
e Widget - Catalog of predefined widgets and dialogs

These layers are all forward and backward compatible, sanfétwer level canbeused in any
highe level. For example, a ISO 7185 Padbalt only inputs and outputs in terms of character
formatted intermsof lines can be run under any level all the way up to a multiple windowing
environment with widgets without source change.

The primary method for performing this is the use of the "character grid", whavhswherethe cells
of screercharacters exist in a graphical system. Gharacter grid is onlyelevantto characters as a
figure, and not tdinesor otherfigures,andoutput to the grid is the default. A program use arbitrary
character placement by explicitly specifyingaihd it can turn offtheautomatic character wrapping
features of the grid.

Similarly, all text and graphical windows are buffered in a multiple windowsigiem, so that they
need not be aware of tdndowsmanagemeninlessheywish tobe

Seriall/O isthenamegiven here of the default methodI80O 7185Pascalvhich goes back to its
origin, and includes therite, read, writeln, readIn, page and similar built in procedures.

170

March 6,

THE LANGUAGE PASCALNE 2011

Terminall/O is so named after the terminals that were used with computessvieral decades, and
for text mode still in use even in windowed operatggtems.

Fromhere, twadistinctbranches exist, one witAnd one without graphics cdgiléity. For example, it
is possible to have both multiple windowsdgetsanddialogsall while staying within the capability
of a character I/0 only terminal. Therefore, there exists both a graphics versionvaofdbes
managemenribrary and the windows library, and one of each with character only ability.

Thenames of the libraries, as &aps in a uses or joins statement, is as follows:

Name Contents Call model
terminal “Terminal I/O Terminal
graphics Graphical 1/0 Graphical
windows Managed windowing Terminal and
graphical
widgets Widgets and dialogs Terminal and
graphical

The serialevel does not require an explicit library, since that isntrenall/O method specified in
ISO 7185 Pascal

The key to understanding the variation in libraries is thegess orjoins of aparticular library does
not necessarily lead to a completely elifint blockof code.A system that only has graphical output
modes will implement the terminbibrary by aliasing that to the graphical libralyis alsocommon
for agraphicalor terminal mode library to include all of the windsmanagement angidget/dialog
functiorsin the same module. Thusuaes orjoins of thewindowsmanagement libraries does not
cause a specific library to linked as much as fiteeg the program will be using these features.

F.2.1 Naming

The functionality of the I/0O modules riewhich effectively means that each of the static classes
represented by the 1/0O modules extend each other. Unfortunately, themaésimanisnn Pascaline

for modules to extend one another. The net effect is that when a module is referenced ts# is a b

class of a static module, that reference is aliased to the derived class. For example, references to calls
in terminal are rerouted tgraphics, since graphics contains all of the procedures and functions of
terminal.

The aliasing of names must covie tfull ability of I/O modules in Pascaline to extend other 1/O
modules. This means that these combinations are possible:

| Modue ... Extendedto |
terminal windows
terminal widget
graphics widget

The method this is carried out is implementation specific. One typical method is to utilize interface
only modules (modules with the implementation stripped out). Each of the I/O modules has its own
interface specification, which includes a superset ob#s2 module. This allows each module to be
fully checked against its own specification. A program that spec#dmesinal only seegerminal

171

March 6,

2011 THE LANGUAGE PASCALNE

definitions a program that specifies graphics only ggegphics definitions and so forth. At the
lowestlevel@ s sembl y | anguage or fdAlinkerd |l evel), ali as:eé
program compiled to thieerminal standard can be linked to a graphics module, etc.

Note that this issue does not exist for classes, and each of the I/0 modules f@agnies of nested
classes.

F.3 Advanced device libraries

F.3.1 sound

sound gives the ability to drive a midi output, perform sequencing, and output wave files.

F.3.2 network
network allows access to a network using t8© 7185 Pascdile model.

F.4 Classes

Many of the standard modules expose a series of classes that gives the same functionality as the

modul ar version, using object based design. This
sense as carried with the object. For exampleninal cortains a class that holds the 1/O files used to

input and output, as well as several internal states such as text colors andseidess does not

carry state, and so classes are not useful there. This reflects the idea in Pascaline that modules are a

static version of a class.

F.5 Library procedure and function notation

For purposes of brevity, BNF notation is used tovgluptional constructs, and théew and
overload word-symbok have been omitted.

The construct [x] means that x is optional.

The libraries description continues the idea that program examples be compilable from the source
material. However, the parts of the interface definitions have been broken into sections by the same
name.For example, terminal contains several source mgdwened terminal, and the understanding

is that these are different sections of the same interface module.

172

March 6,

THE LANGUAGE PASCALNE 2011

G Annex G: System Services Library

Services containscommon operating system reldteasks, including directory eess, timeand date,
files and paths, file attributes, environmstrings,thelocal option character, and execution of external
programs.

G.1 Filenames and Paths

A file specification is composed of a path, name exténsion
<path><name><ext>

Theexact format of a fé specification changes with the operating systemraimebrknam takes

a file specification and breaks it down into its path, nam@extensiorcomponentsTheroutine

maknam does the opposite, creating@mposite name from the three components. Wéhfile
specification has no patit,means that it refers to the default path. When a file specification needs to
be printed or saved in an absolute format, with the path alsymfied thefulnam routine is used to
"normalize" the file specificatiohy filling out the complete path

To parsdfile specificationdrom the user, the routiniélchar returns echaracter set of all possible
characters in a filename. This can be usegkta sequence of characters from a string or file that can
constitute dile specification. Once the potential file specification has been loaded sttimg, it can

be checked for validity as a file specificationuafidfile, and as path byvalidpath.

Filenames are based on the idea thete is a set of characterstthaay be used for filenames in a

particular installation, and the characters outside that set are used to delimit between filenames. This
characteristic of filenames allows a program to
structure usig subsequent call$he program may remove certain characters from the set of filename
characters to be able to parse command lines.

A common methodised to represent filenames in command lines and other text when the characters
allowed in a filename aressentially unlimited is to quote the filename. Using this method, the
filename appears as:

Amyfileo
or
6myfiled

This can work together with limited character set filenames by recognizing the leading quote. If both
types of quotes are allowed, then the legdjuote should match the trailing quote. Additionally, the

program should be able to recognize a fAquote i ma
Charactersequence . Resut ...

i O Doubl e quote 0

66 Single quote O

\0 Forced doubl e quote i

\O6 Force single quote O

173

March 6,

2011 THE LANGUAGE PASCALNE

A robustprogram would recognize all of these forms.
Note thatservices does not contain any method to parse filenames.

If a file specification contains wildcards, this can be determinesili. services does not define

what wildcards characters or specifiersased, or their formatvild simply indicates that the

filename contains a wildcard specification that may result in multiple files being indicated by the same
file specification.

G.2 Predefined paths
To find common objects that a program needs, thredefined paths are provided:

Program path

Is the path that the program was executed from. This is used wefiaithataccompaniedhe
program, and system wide option filgetpgm is used to reathe path.

User Path

This is the path for the currentars home directory. This issedto storeoptionsthat only
apply to the current usegetusr is used to read the path.

Current Path

The default path is used to find options that apply only to the current file Wweikgdon.

Unlike the other path typeh)e current path can be both read and set. Setting the current path
will set the default path used to finish incomplete file specificatigregcur is used to read the
path, andsetcur is used to set.

Note that if thesystem has no concept of a cutrpath, this property is used to form full path
names from default path namessirvices.

G.3 Time and Date

Time is kept in two different formats Bervices. The first is seconds timandthe seconds "clock"
time. Seconds time is literally a count of thember ofseconds since a fixed reference time. Clock
timeis a free running clocthatticks every 100 Microseconds.

Secondgimeis returnedby thetime function. It is in a format callet52000", and it$ the number of
seconds relative to midnight dime morningof Januaryl, year 2000. This means that S2000 has a
negative value for years before 2000, and a positive value afteB#0 time is dependent on the
representation of dinteger. This results in the following limits according to bit size

Farthest year into the past Farthest year into the future |
32 1932 2068
64 1608591645726 1608591649726
Note that these times dondét account for | eap year

casel6 bits cannoteasonablye used to represent a time, since the seconds in a year exceed the
format.

174

March 6,

THE LANGUAGE PASCALNE 2011

This represents iiasonable range of tinfier 32 bits and by the year(58 it is likely that the time

will universallybe 64 bits or better. Note that it does not matter how masyit# returned byme, so
that transition will occur seamlessBecause 64 bits is already in excess of what is needed for
computer based timekeeping, it is likely that time in 64 or more bits will actually contain fewer bits,
despite théinteger representation

S2000 isself-relative meaninghat times relative to the year 2000 are measured by a fixed number of
secondsS2000 only matched UTC time once, exactly at midnight on the morning of January 1, year
2000. All times after that or before thar after that are increasingly diverge from UTC. In particular,
this means that the current time and date will not match current UTC.

There are two types of calculations that can be applied to UTC, fixed and dynamic. The fixed
calculation typically find&JTC by applying leap year corrections, then a fixed table of leap second
years. The fixed calculation will fall out of accuracy from the time that the system is released. It is
impossible for it to be otherwise, since UTC is based on astronomical observat

The dynamic calculatiorelieson receiving a current table of corrections from the network or other
communications method. This is typically the same calculation as fixed time, but with a continually
updated table of leap seconds.

When an S2000 timis not available, it is customary to set ittoaxlint, whichmakes it clear that
the time was not set.

Thetimereturned bytime is in GMT or "universal" time. To convert to lodahe, the functionocal
is used. It takes the given GMT S2000 time, affisbtsit by the local time zone offset, and by
daylight savings time, and returns @mjusted local time.

The time can be placed, in character format, to a stringigs, and writterto either an output file,
or the standardutput file by writetime. The date can bglaced, in character format, to a string by
dates, and writterto eitheranoutput file, or the standard output Wyitedate. These procedures
format the time and date using the current internationalization settings of the host.

clock time s typically derived from a free running counter kept in the lwosbputer and it is
represented bicardinal values It may or may not beynchronizedo the values returned by time.
For this reasorglock should be treated as se#flative and not comped totime in any way.

clock time is treated differently frorfime. Since it freeuns,you mustbe preparedor it to "wrap",
or suddely start counting up from zerd@his can baletermined by if any stored time is greater, or
later in time, than theurrentclock value.Thefunctionelapsed takes a reference time, and
determines hownuch time has passed from that, including compensation for wrapaithamexact
count at which thelock count wraps is system deuiemt.

The total amount of time that can be representedatitbk is determinedhot only by the bit sizeof
theclock return value, but also by the size of tweinter the host computer maintains. All that is
guaranteed is thatock will be able to keep a uniguime for at least 24 hours.

Theactualincrementof time for each tick of the clock is determined by hlest computer. If the host
cannot time to 10@nicrosecondccuracythentheclock time will increment in multiples > 1, or
effectively a running appximation of the actual timer. For this reason, there may not be an exact time
lengthbetween successive counts of the timer.

175

March 6,

2011 THE LANGUAGE PASCALNE

G4 Directory Structures

Thelist procedurdakes a file specificain, including wildcards, andttens a linked list of all of the
matching directory entries:

{ attributes }

attribute = (atexec, {is an executable file type }
atarc, { has been archived since last modification }
atsys, {is a system special file }
atdir, {is a directory s pecial file }
atloop); { contains heriarchy loop }

attrset = set of attribute; { attributes in a set }
{ permissions }

permission = (pmread, { may be read }
pmwrite, { may be written }
pmexec, { may be executed }
pmdel, {may be deleted }
pmvis, {may be seen in directory listings }
pmcopy, { may be copied }
pmren); { may be renamed/moved }

permset= set of permission;{permissionsin a set}
{ standard directory format }

filptr = ~ilrec; { pointer to file records }

filrec = record

name: pstring; {name of file }

size: Icardinal; { size of file }

alloc: Icardinal; { allocation of file }

attr: attrset; { attributes }

create: linteger; {time of creation }

modify: linteger; {time of last modification }
access: linteger; {time of last access }
backup: linteger; {time of last backup }
user: permset; {user permissions }
group: permset; {group permissions }
other: permset; { other permissions }
next: filptr {nextentry in list}

end;

Each directory file entry has the name of the file, along with a saraesscriptive data fahe file.
These are divided in attributes andgrmissionsAn attribute is a characteristic of the file, and

176

March 6,

THE LANGUAGE PASCALNE 2011

generallydoesnot changePermissionsndicatewhatcan be done with the file, and are divided into
theuser, group and other permissions.

Not all attributes noall permissions are available on every operasiygtemIf a particular permission
or attribute is not implemented on a given operasiyggiem, then setting it will have no effect, and
reading it willalwaysreturnunset.

Thesize of the file is its sizin bytes. The allocation is the total spacecitupies on the storage
medium, which may be different from its size for sevezakonsTheblockingmaybe such that the
size is rounded up to the nearelsick. The operating system may have the abititseserve space for
thefile beyondwhatit is currently using, or may not release space back to theieeee pool if the
file is truncated.

The times of interesting events in the files life are available, in "S2000" féameady discussédif a
paricular time is not available, then it is settoaxlint.

The file structure is a collection of items that may be implemented on anygpeestingsystem The
way to prevent the need to decide what is and what isnpdéémented on a particular systends

focus on what is essential for all systefgt examplethe size of a file is usually present, as well as
the lastmodification time. The last modification tinean be used to determine wherbackup files,

by comparing it to the date of the baclagpy of the same filegr to the modification date of the
archive conmainingthefile. Similarly, a"make" style program can determine when to remake a file by
looking at the modification time.

G.5 File Attributes and Permissions

The attributes of a file can be set by name withsteatr command. It takea setof attributesandthe
filename, and sets all the given attributes orfitheThe routineresatr resets attributes. The user
permissions for a filareset and reset byetuper andresuper. The group permissions are set and
reset bysetgper andresgper. The other permissions for a file are set and t@gsttoper and
resoper.

G.6 Environment Strings

Theenvironmenis a collection of strings that is kept by the executive, @a&bed to programs when
they are started. Each string has a nanda value,both of which are arbitrary strings. An
environment string can be retrievedrimme bygetenv, and set bgetenv. The entire environment
string set caberetrievedat one time ¥ theallenv routine, which uses a linked list to represent the
environment strings:

177

March 6,

2011 THE LANGUAGE PASCALNE

{ environment strings }
envptr = *envrec; { pointer to environment record }
envrec = packed record

name: pstring; { name of string }
data: pstring; { data in stri ng }
next: envptr { next entry in list }

end;

The standard format for environment string names is the same for Pascaline idergifiersharacter
in the sequence 'A'..'Z', 'a'..'z', ' ', followedamny number of characters in the sequenceZA'a'..'z',
' ','0.."9'Thedata in the string can be a series of any valid characters.

Thereason for retrieving the entire environment is to pass it on to other programesxacan
statement.

Althoughmost availabl®perating systems implement tievironmenstringconcept, it has fallen out

of favor in modern programs. Placing the needed configuration strings for a particular program into a
place wheréhe executivewill useit bothrequires special calls, and places individual program data

into apool wheret can be deleted or corrupted.

Some current systems use a repository concept where program data is kept in a central tree structured
database. This is nobveredn services, and would be covered in another library.

A better method is to usefile containinghe configuration information for the program in its startup
directory,then optionally another version in the user direcgtand finally one in the current directory
This allows optionghataffect all runs on the current machine tokeet in one file, while the options

for a particular user are kept in another,fdad lastly the options in use in the current project in the
current directoryThis system has the advantage that it addresses concerns in a multiuser operating
system, ad allows each program to maintain its own startup data.

For systems that do not implement an environment string capainilfilementation®f Pascaline
commonly keep a file in the user path area that contairgtrihgs. This ighen used just for that
program, that is, the set of environment strings are kept just for the accessing program.

G.7 Executing Other Programs

An external program can be executecekgc, which takes theommandine for the program,
including the program name, and all of its paramsed®d other options on the same line after one or
more spaces:

cmd parameter parameter... parameter

This is passed as a string to theec routine.Whenprogramsareexecutedhis way, the executing
program does not need to await the finish ofghagram, nor can it find out if the program ran
correctly. If this is required, th@utineexecw is used.execw will wait for the program to complete,
thenplace the error return for the program in a variable. This variable will bién@® grogram ran

178

March 6,

THE LANGUAGE PASCALNE 2011

correctly, or nonzero if it didn't. The exact numerical meanifghe error is up to the program
executed.

If the system cannot execute programs in paraiedc is equivalent texecw, but without the return
code.

If the environment is to be set for the executed program, thexadle canbe used whichtakesan
environment list. This allows the environment to be retrieved from the current environment a create
as new, modified or added &asneededthenpassedo the executed prograraxecew does the same
thing, butwaits for the program to finish, and returns an error code.

If a command line concept does not exist on the target system, an implemesaatass it via
another means, such as a file or envirortaderariable Alternately, it could simply be ignored.

G.8 Error Return Code

Eachprogramwhenit completes, returns an error code. By convention, iEther code is 0, then no
error occurred. If the code is not 0, then an error occurred, and the meathiagnomber is defined
by the application.

When a program under Pascaline exits, it returns a code that was set to 0 by default when the program
started. The procedus®terr can be used to set a aperocode, which will be returned when the

progam exits. Note that it doest cause the current program to exit, it simply sets the code that will

be returnedvhenit does.It does not matter how the program exits, from the main proglack, or a

halt statemenor exception

G.9 Creating or Removing Paths

A file path, or directory, is created nyakpth, and removed byempth. If thedirectoryhasfilesin

it, then it cannot be removed until all the fil@sd directories) under it have been removdis

means by implication that each section of a patist be removed separately, and a tree structured

delete would have to repeatedly remove the contents of one element of the path, then remove the path
section itself, and so on.

G.10 Option Character

When parsing commands, the option character for the cuperdaiting systeris found withoptchr.
Services does not define the exact format of command line options. The option character is an aid to
portability.

G.11 Path Character

Thepah characters used to separate path components, usually direciorgesee structured file
systemwithin a path for the given system. It can be found withpttechr function.services does
not define the contents, structwemeaning of a path. The path division character is an aid to
portability.

G.12 Location

The funcionslatitude andlongitude exist to give the location of the host computer in geographic
coordinates, and return integers. The measurements are ratioeditu.

179

March 6,

2011 THE LANGUAGE PASCALNE

Thelongitude is 0 at the Prime Meridian, a line passing thought Greenwich;TU& longituas 0 to
maxint are east of the line (or in the future timewise), and longitude$ M &xint are west of the

line. Thusmaxint andi maxint meet on the opposite side of the world from Greenwich. This means
for a 32 bit integer that there @0000000838190B7 degrees for eacktep 0r9.3306920025
millimetersper step.

Thelatitude is 0 at theequatorandmaxint at the north pole, andgmaxint at the south pole.

Thelongitude andlatitude in minutes and seconds can be found with:

program location;

var degrees_longitude: integer;
minutes_longitude: integer;
second_longitude: integer;
degrees_latitude: integer;
minutes_latitude: integer;
seconds_latitude: integer;
west: boolean;
north: boolean;

begin

degrees _longitude round(longitude *(0. 0000000838190317);

minutes _longitude round(xlongitude mod
11930465/198841.078518519);
seconds _longitude := round(longitude mod
198841/ 3314,0179753086400000);
if degrees<0 then west:=true else west ;= false;

round(longitude *
0. 0000000838190317);
round(longitude mod
11930465/198841.078518519);
round(longitude mod
198841/ 3314,0179753086400000);
if degrees _latitude <0 then north := false else north:=true

degrees_lat itude :

minutes_lat itude :

seconds_| at itude :

end.
[need to correct this for ellipsoid]

The shape of the world is approximated as an ellipSdiis means that the circumference of the earth
at the equator is a longer distance than the circumference of the earth on the prime (bgrabant
68 kilometers).

The altitude of the host in MSL or Mean Sea Level is givealtiyude. It is O forthe mean surface of
the ocean (sea level averaged over a long period of timejpaxroht at 100 kilometers in height (the
altitude at which space begins). liiimaxint 100 kilometers in depth.

180

March 6,

THE LANGUAGE PASCALNE 2011

The altitude of 0 (MSL) is typically defined as height abavaodel of the geoid, or idealizetbdel

of the earth. This means it would have to be calculated against the latitude and longitude to find the
actual distance from true center of the earth. However, in the majority of cases it can be accepted as a
relative measurement.

The location of the host can be entered by the user or determined automatically by instrumentation
(GPS). The host could even be mobile, in which case it is possible to determine speed and direction
from the coordinateagainst time

If there is no location, it is indicated by longitude equalntaxint. This value ofongitude is
redundant tanaxint. Bothlongitude andlatitude are considered unavailable by the value of
longitude.

Altitude is available separate frolongitude andlatitude. It is not available whealtitude is 1
maxint.

The country of location is found wittountry, which gives a string corresponding to the English
name of the country. At this writing, the following countries exisalphabetical order

Name # Name # Name # Name |
1 Afghanistan 4 Dhekelia 131 Kyrgyzstan 196 Saint Kitts and
Nevis
2 Aland Islands 248 Djibouti 132 Laos 197 Saint Lucia
3 Albania 8 Dominica 133 Latvia 198 Saint Pierre and
Miquelon
4 Algeria 12 Dominican 134 Lebanon 199 Saint Vincentand
Republic the Grenadines
5 American Samoa 16 Ecuador 135 Lesotho 200 Samoa
6 Andorra 20 Egypt 136 Liberia 201 San Marino
7 Angola 24 El Salvador 137 Libya 202 Sao Tome and
Principe
8 Anguilla 660 Equatorial 138 Liechtenstein 203 Saudi Arabia
Guinea
9 Antarctica 10 Eritrea 139 Lithuania 204 Senegal
10 Antigua and 28 Estonia 140 Luxembourg 205 Serbia and
Barbuda Montenegro
11 Argentina 32 Ethiopia 141 Macau 206 Seychelles
12 Armenia 51 Europalsland 142 Macedonia 207 Sierra Leone
13 Aruba 533 Falkland Islands 143 Madagascar 208 Singapore
(Islas Malvinas)
14 Faroe Islands 144 Malawi 209 Slovakia
15 Australia 36 Fiji 145 Malaysia 210 Slovenia
16 Austria 40 Finland 146 Maldives 211 Solomon Islands
17 Azerbaijan 31 France 147 Mali 212 Somalia
18 Bahamas, The 44 French Guiana 148 Malta 213 South Africa
19 Bahrain 48 French 149 Marshall Islands 214 South Georgia
Polynesia and the South
Sandwich Islands

181

March 6,

THE LANGUAGE PASCALNE

2011
20 Bangladesh 85 French Southerr 150 Martinique 215 Spain
and Antarctic
Lands
21 Barbados 86 Gabon 151 Mauritania 216 Spratly Islands
22 Bassasdalndia 87 Gambia, The 152 Mauritius 217 Sri Lanka
23 Belarus 88 Gaza Strip 153 Mayotte 218 Sudan
24 Belgium 89 Georgia 154 Mexico 219 Suriname
25 Belize 90 Germany 155 Micronesia, 220 Svalbard
Federated States
of
26 Benin 91 Ghana 156 Moldova 221 Swaziland
27 Bermuda 92 Gibraltar 157 Monaco 222 Sweden
28 Bhutan 93 Glorioso Islands 158 Mongolia 223 Switzerland
29 Bolivia 94 Greece 159 Montserrat 224 Syria
30 Bosnia and 95 Greenland 160 Morocco 225 Taiwan
Herzegovina
31 Botswana 96 Grenada 161 Mozambique 226 Tajikistan
32 Bouvet Island 97 Guadeloupe 162 Namibia 227 Tanzania
33 Brazil 98 Guam 163 Nauru 228 Thailand
34 British Indian 99 Guatemala 164 Navassalsland 229 Timor-Leste
Ocean Territory
35 British Virgin 100 Guernsey 165 Nepal 230 Togo
Islands
36 Brunei 101 Guinea 166 Netherlands 231 Tokelau
37 Bulgaria 102 GuineaBissau 167 Netherlands 232 Tonga
Antilles
38 Burkina Faso 103 Guyana 168 New Caledonia 233 Trinidad and
Tobago
39 Burma 104 Haiti 169 New Zealand 234 Tromelin Island
40 Burundi 105 Heard Island 170 Nicaragua 235 Tunisia
and McDonald
Islands
41 Cambodia 106 Holy See 171 Niger 236 Turkey
(Vatican City)
42 Cameroon 107 Honduras 172 Nigeria 237 Turkmenistan
43 Canada 108 Hong Kong 173 Niue 238 Turks and Caicos
Islands
44 Cape Verde 109 Hungary 174 Norfolk Island 239 Tuvalu
45 Cayman Islands 110 Iceland 175 Northern Mariana 240 Uganda
Islands
46 Central African 111 India 176 Norway 241 Ukraine
Republic
47 Chad 112 Indonesia 177 Oman 242 United Arab
Emirates
48 Chile 113 Iran 178 Pakistan 243 United Kingdom
49 China 114 Iraq 179 Palau 244 United States

182

THE LANGUAGE PASCALNE March 8,

2011
50 Christmas Island 115 Ireland 180 Panama 245 Uruguay
51 Clippertonisland 116 Isle of Man 181 PapuaNew 246 Uzbekistan
Guinea
52 Cocos (Keeling) 117 Israel 182 Paracel Islands 247 Vanuatu
Islands
53 Colombia 118 ltaly 183 Paraguay 248 Venezuela
54 Comoros 119 Jamaica 184 Peru 249 Vietnam
55 Congo, 120 Jan Mayen 185 Philippines 250 Virgin Islands
Democratic
Republic of the
56 Congo, Republic 121 Japan 186 PitcairnIslands 251 Wake Island
of the
57 Cook Islands 122 Jersey 187 Poland 252 Walllis and Futune
58 Coral Sea Islands 123 Jordan 188 Portugal 253 West Bank
59 Costa Rica 124 Juan deNova 189 Puerto Rico 254 Western Sahara
Island
60 Cote d'lvoire 125 Kazakhstan 190 Qatar 255 Yemen
61 Croatia 126 Kenya 191 Reunion 256 Zambia
62 Cuba 127 Kiribati 192 Romania 257 Zimbabwe
63 Cyprus 128 Korea, North 193 Russia
64 Czech Republic 129 Korea, South 194 Rwanda
65 Denmark 130 Kuwait 195 Saint Helena

If the country is not set, an empty string (not a nil string) is returned.

The ordinal number of the countiy given bycountryord, which returns the number of the language
from the table abové@.hese ordinal numbers are given by the standard ISO-B166

The current time zone, is given tiynezone. It gives hours in the range €f2 to +14, which indicate
the offset in hours from GM®&r Greenwich Mean Time. The functidiaylightsav is true if daylight
savings is in effect in the current host location.

If 24 hour time is used in the current host location, the funtiroe24hour will returntrue,
otherwisefalse. The accepted formatrf@4 hour time is with hours from 0 to 23.

Both the current time zone and daylight savings time are factored into the calculdtioalpand
that is the preferred method to find local time.

G.13 Internationalization

The current language in use on the hosintde found withanguage, which gives a string
corresponding to the English name of the langu@e.languages used are according to the ISO 639
1 standard:

183

March 6, THE LANGUAGE PASCALNE

2011

Name # Name # INETN[E # Name

1 Afan 36 French 71 Lithuanian 106 Siswati
2 Abkhazian 37 Frisian 72 Macedonian 107 Slovak
3 Afar 38 Galician 73 Malagasy 108 Slovenian
4 Afrikaans 39 Georgian 74 Malay 109 Somali
5 Albanian 40 German 75 Malayalam 110 Spanish
6 Amharic 41 Greek 76 Maltese 111 Sudanese
7 Arabic 42 Greenlandic 77 Maori 112 Swabhili
8 Armenian 43 Guarani 78 Marathi 113 Swedish
9 Assamese 44 Guijarati 79 Moldavian 114 Tagalog
0 Aymara 45 Hausa 80 Mongolian 115 Tajik

11 Azerbaijani 46 Hebrew 81 Nauru 116 Tamil
12 Bashkir 47 Hindi 82 Nepali 117 Tatar
13 Basque 48 Hungarian 83 Norwegian 118 Tegulu
14 Bengali 49 Icelandic 84 Occitan 119 Thai

15 Bhutani 50 Indonesian 85 Oriya 120 Tibetan
16 Bihari 51 Interlingua 86 Pashto 121 Tigrinya
17 Bislama 52 Interlingue 87 Persian 122 Tonga
18 Breton 53 Inupiak 88 Polish 123 Tsonga
19 Bulgarian 54 Inuktitut 89 Portuguese 124 Turkish
20 Burmese 55 Irish 90 Punjabi 125 Turkmen
21 Byelorussian 56 Iltalian 91 Quechua 126 Twi

22 Cambodian 57 Japanese 92 RhaeteRomance 127 Uigur
23 Catalan 58 Javanese 93 Romanian 128 Ukrainian
24 Chinese 59 Kannada 94 Russian 129 Urdu

25 Corsican 60 Kashmiri 95 Samoan 130 Uzbek
26 Croatian 61 Kazakh 96 Sangro 131 Vietnamese
27 Czech 62 Kinyarwanda 97 Sanskrit 132 Volapuk
28 Danish 63 Kirghiz 98 ScotsGaelic 133 Welch
29 Dutch 64 Kirundi 99 Serbian 134 Wolof
30 English 65 Korean 100 SerbeCroatian 135 Xhosa
31 Esperanto 66 Kurdish 101 Sesotho 136 Yiddish
32 Estonian 67 Laothian 102 Setswana 137 Yoruba
33 Faeroese 68 Latin 103 Shona 138 Zhuang
34 Fiji 69 Latvian 104 Sindhi 139 Zulu

35 Finnish 70 Lingala 105 Singhalese

The ordinal number of the language is giverldnyguageord, which returns the number of the

language from the table above. Note that even if the languages are added to or subtracted to in future
implementations, the ordinal numbewill not be changed, simply extended at the, avith any

removed entries set to an empty string

The decimal point character in use can be found editimal. The current number separator in use is
defined withnumberseparator.

184

March 6,

THE LANGUAGE PASCALNE 2011

The time and date formats can be derived the country of the host. The main difference between formats
is the order of the elements in time and date. The fundiiorenorder anddateorder give the
ordering:

dateorder Code Date format

yearmonthday (ISO8601 standard format)
yeardaymonth

month-day-year

monthyearday

day-monthyear

day-yearmonth

OO~ IWIN|IFP

timeorder Code Time format

Hour:minute:second (ISO 8601 standard forma
Hour:second:minute

Minute:hour:second

Minute:second:hour

Second:hour:minute

Second:minute:hour

oo~ lWNPE

The separator character for fields in the date is giveshabgseparator, w h i-@nhSOi8601 6
date formats. Téa separator character for fields in time is giventibyeseparator, whi ch i s 0:
8601time formats.

The number of digits in each section of the time and date formats is:

Year 4
Month 2
Day 2
Hour 2
Minute 2
Second 2

If the time and date format is not set, it defaults to the ISO 8601 standard for time &fodndating.
This is the correct format for output that can be read across international boundaries.

Note that the proceduréisnes, dates, writetime andwritedate automatically use the
internationalization settings of the host to arrive at the host comsmagural time and date formatting.

The symbol for the currency used in the country of host is giverulmencychr.

G.14 Exceptions
The followingexceptions are generatedsiarvices:

185

March 6,
2011

THE LANGUAGE PASCALNE

Identifier Meaning

NameToolLong

The filename passed was too long faesvices
internal buffer.

FileSizeTooLarge

The file(s) being processed were too large.

StringNil

The string passed was nil.

StringTooSmallForTime

The string result buffer was too small to hold th
time.

StringTooSmallForDate

The string result buffewas too small to hold the
date.

EnvironmentStringTooLarge

A system enviroment string was too large for a
services buffer.

CommandStringEmpty

The command string passed was empty.

ProgramNotFound

External program not found.

CurrentPathToolLong

Current path is too long f@aservices buffer.

FilenameStringEmpty

The filename passed was empty.

CannotDetermineProgramPath

The program path could not be determined.

Services establishes a series of exception handlers for each of the above exadytiogstartup.
Exceptions not handled by a client progransefvices will go back toservices, then print a
message specific to the error, then the general exception will be thrown.

Not all procedures and functions throw all exceptions. See each pre@dunction description for a
list of exceptions throwrA client of services need only capture the exceptions occurring in the

procedure or function that is called.

186

March 6,

THE LANGUAGE PASCALNE 2011

G.15 Functions and procedures in services

For all of the following callswhere an outpuile is used it can be left off. The result is to default to
the standardutput file.

procedure listff: [p]string; var I: filptr);
Form a file listirom the filenamén, and return in the file entry lit The filenamdn may
contain wildcards, and may be fulpathed, or refer to the current directory. If no files are
found, then thdist pointer is returnedil.

ExceptionsFileSizeToolLarge, StringNil

procedure times(vag: string; t: linteger);
functiontimes(t:linteger): pstring;
Placetime fromS2000 time in strings.

ExceptionsStringTooSmallForTime

proceduralates(vas: string;t: linteger);
functiondates(t: linteger)pstring;

Placedate fromS2000timet in strings.

ExceptionsStringTooSmallForDate

procedure writetime([var f: text;] t: linteger);
Write time fromS2000 time to text file f, or by default, the standard output file.

ExceptionsNone

procedure writedate([var f: text;] linteger);
Write date fromS2000timet to text file f, or by deéult, the standard output file.

ExceptionsNone

function time: linteger;
Returns current S2000 time in GMT

ExceptionsNone

187

March 6,

2011 THE LANGUAGE PASCALNE

function local(t: linteger): linteger,;

Converts the given GMT S2000 tirhéo local time, using the time zone offsetd daylight
savings status in the host computerd returns the result

ExceptionsNone

function clock: Icardinal
Returns 100 microsecond, free running time.

ExceptionsNone

function elapsed(rchardina): Icardinal

Given astoredclock timer, will check thecurrentclock time and find the totalumber of
100 microsecond ticks since the given tirtie=n return thatAccounts for timewraparound.

ExceptionsNone

function validfile(s: [p]string): boolean;

Parses and checks tfile specifications for a validfilename on theurrent system. Returns
true if valid.

ExceptionsStringNil

function validpath(s: [p]string): boolean;

Parses and checks tfile specifications for a valid path on theurrent system. Returns true if
valid, otherwise false

ExceptionsStringNil

function wild(s [p]string): boolean;
Checks if the file specificatios contains wildcards. Returns true if, stherwise false

ExceptionsStringNil

188

March 6,

THE LANGUAGE PASCALNE 2011

procedure getenv(ls: stringar ds:string);
functiongetenv(lsstring): pstring;
Finds and returns an environment strilsgcontains the name of the string to look dp,or

the return value contains the resulting string as found. If there is no environment string by that
name, the return is either all blanks, or nil.

Exceptons:EnvironmentStringToolLarge

procedure setenv(sn: [p]string; sd: [p]string);

Finds and sets an environment strisig.contains the string name to set, a&udcontains the
contents to set it to. If there is no string by that name, it is created, oténeisld string is
replaced.

ExceptionsStringNil

procedure allenv(var el: envptr);
Returns a complete list of the strings in the environnweet.

ExceptionsNone

procedure remenv(sn: [p]string);

Remove a stringn from the environment. The string found by name, anémovedfrom the
environment. No error results if the string does not exist.

ExceptionsStringNil

procedure exec(cmd: [p]string);

Execute external program, with parametéi@m the stringgmd. Does not wait for the
program to finif, and cannot detect if it finished with an error.

ExceptionsCommandStringEmpty, ProgramNotFound, StringNil

procedure exece(cmd: [p]string; el: envptr);

Execute external program, with paramefeosn the stringcmd and full environment. The
environmenis passed as a list @. Does not wait for the program to finish, and cannot detect
if it finished with an error.

ExceptionsCommandStringEmpty, ProgramNotFound, StringNil

189

March 6,

2011 THE LANGUAGE PASCALNE

procedure execw(cmd: [p]string; var e: integer);
Execute external program, wigarameterérom the stringcmd. Waits for the program to
finish, and returns its error codeanThe error code is O for no error, otherwise the error is a
code specified by the program executed.

ExceptionsCommandStringEmpty, ProgramNotFound, StringNil

procedure execew(cmd: [p]string; el: envptr; var e: integer);
Execute external program, with paramefeos the stringcmd and full environment. The
environment is passed as a liseln Waits for the program to finish, and returns its error code
in e. The error code is 0O for no error, otherwise the error is a code specified by the program
executed.

ExceptionsCommandStringEmpty, ProgramNotFound, StringNil

procedure getcur(var fn: string);
function getcur: pstring;

Get current patto fn or the resultReturns the current directory path.

ExceptionsCurrentPathToolLong

procedure setcur(fn: [p]string);
Set current patfrom stringfn. Sets the default path for all file specifications.

ExceptionsStringNil

procedure getpgm(var string);

functiongetpgm: pstring;
Get the program patio s or returns it Returns the program path, which is the path the
programrunning was loaded from.

ExceptionsCannotDetermineProgramPath

procedure getusr(var fn: string);
function getusr: pstring;

Get user pathko fn or returns it Return the user path, which is a path specific to each user.

ExceptionsNone

190

March 6,

THE LANGUAGE PASCALNE 2011

procedure brknam(fn: [p]string; var p, n, e: [p]string);

Break down file specification. Breaks the file specificafiodown intopathp, namen, and
extensiore. Note that any one of the resultiogmponents could be blank, if it does not exist
in the name.

ExceptionsFilenameStringEmpty, StringNil

proceduremaknam(vafn: string; view p, n, e: string);

function maknam(pfp]string; n: [p]string; e{p]string): pstring;
Create file specification from components. Creates file specificatitom pathp, namen,
andextensiore. Components may be blank, but the path and the name cannot both be blank.

ExceptionsNameTooLong, StringNil

procedure fulnen(var fn: string);
function fulnam(fn: string): pstring;

Create full file specification frora partialfile specificationfn. Given a file specification with
an incomplete path (either by using the default path, or mnemonic shéotcinisigs like
parentdirectory), creates a fully pathed name of stanflamd. This can "normalize" file
specifications, for comparisons, and to sthecomplete path for the fil&he fully pathed
result is returned ifn or as the function result.

ExceptionsNone

procedire setatr(fn: [p]string; a: attrset);
Set attributes. Given a file by narirg the attributes in the satare set true for the file.

ExceptionsStringNil

procedure resatr(fn: [p]string; a: attrset);
Reset attributes. Given a file by nafne the attributes in the satareset false for the file.

ExceptionsStringNil

191

March 6,

2011 THE LANGUAGE PASCALNE

procedure bakupd(fn: [p]string);

Set backup time current. Given a file by ndmgsets the backup time fte file as current.
Backup programs should also reset the arcbit® show that backup has occurred.

ExceptionsStringNil

procedure setuper(fn: [p]string; p: permset);

Set user permissions. Given a file by ndmgthe permissions in the getare set true for the
file.

ExceptionsStringNil

procedure resuper(ffp]string; p: permset);

Reset user permissions. Given a file by ndmehe permissions in the getare set false for
the file.

ExceptionsStringNil

procedure setgper(fn: [p]string; p: permset);

Set group permissions. Given a file by nadmethe pernmssions in the sqt are set true for the
file.

ExceptionsStringNil

procedure resgper(fn: [p]string; p: permset);

Reset group permissions. Given a file by ndmehe permissions in the ge@are set false for
the file.

ExceptionsStringNil

proceduresetoper(fn: [p]string; p: permset);

Set other permissions. Given a file by ndmethe permissions in the getare set true for the
file.

ExceptionsStringNil

192

March 6,

THE LANGUAGE PASCALNE 2011

procedure resoper(fn: [p]string; p: permset);

Reset group permissions. Given a file by ndmehe permissions in the getare set false for
the file.

ExceptionsStringNil

procedure seterr{énteger);

Set program return errer The error code returned by the current prograsetsThis has no
effect until the program exits.

ExceptionsNone

procedure makpth(fn: [p]string);
Make pathusingfn. Creates a new path or directory. If the path already existnigsror.

ExceptionsStringNil

procedure rempth(fn: [p]string);

Remove patlin. Removes a path, or directory. The directory neugtt, and mudbe empty of
any files or other directories, or an error results.

ExceptionsStringNil

procedure filchr(var fc: chrset);
Returns the set of valid filename characterisc.

ExceptionsNone

193

g"oalr;h 6, THE LANGUAGE PASCALNE

function optchr: char;
Find the option characteReturnghe character that is used to introduce options in command

liens on the current system.

ExceptionsNone

function pthchr: char;
Returns the character used to separate components inia paglcurrent system

ExceptionsNone

194

March 6,

THE LANGUAGE PASCALNE 2011

H Annex H: String Library

The string library implements various useful string functions. Strings areohtidtf arrays of
characters in Pascal, and extended in Pascaliriegs unifiestwo schemes. The first is the space
paddedight scheme familiar fronSO 7185PascalThe second is dynamic strings.

Dynamic stringsarealmost the ideal string type. They are unlimited in length, they can be returned
from a function. And because their storégeecycledthey are space efficienthey can also be fairly
speed efficient by managing when and if they are recycled.

Thesystemdeclarations for padded or fixed, and dynamic strings appear as:

type string = packed array of char;
pstring = ~string;

Thestringfunctionsareoftenoverloadedsothat they take both types sirings.

H.1 Conventions

In some cases, it is ambiguous whether a padded or dysttinigargumenis meant.Forexample,
the string compare facility does not know which typedperands are, and it makes a differetacthe
result, since length plays a partstringcomparisonFor these situations, a "p" (for padded) is
appended tthe name of the procedure or function.

Many functions and procedures must know if aasgters For example stringcomparecanbewith
case, or caseless. For these procedures and funttieresjs appendeal"c" to the ones that case does
matter.

A few functions and procedures perform different actions on stringhasacters. For the string
versions, an "s" is appended to the name.

H.2 Words

Someof thefunctionsand procedures treat the strings as a series of whiatsls are a series of non
space characters surrounded by one or more spacesxdrople:

o] hi ther e George

Hasthree words, 'hi', 'there’, and ‘george’. Such words can be counted, indebedracted.

H.3 Format Strings

Some routines accept a "format string” to output numbers with. The forarafirmage of the output
string the number is converted into. The string will contaseries of formatharacters. The entire
format string is copied to the resstting,but the special format characters are replaced with parts of
the numbeto be converted.

Thenumber Ai mage 0 hefamat saingreansistsafiy humben o€dntiguous
characters from th+d,sed$d,0900&06 6AD%G, @, 6] . Any numk
before the image, and any number of other characters caw follo

195

March 6,

2011 THE LANGUAGE PASCALNE

The first thing the format routines do is match the format to the number for decimal point position. For
example:

+999,999.999 Format characters
50.12 Actual number (without leading or trailing
Zeros)

Then,the meaning of each format character depends on if that character appears to the left or to the
right of the decimal pointand if there araon-zerodigits more significant (if to the left of the decimal
point) ornonzero digitdess significant (if tohe right of the decimal point).

If a decimal point is seen, and one has already appeared in the current numbet isnagesrror.

Each format character operatesonthegdi t t hat matches i tobsafgrosi ti on w
decimal point alignrant.

The format characters are:
9

Represents digit. To the left of the decimal point, this is replaced wtshmatchingdigit

from thenumber If there is naligit in the number at that positipand no more significant
non-zero digit a spaceeplacegheformat characteiTo the right of the decimal poirif,there
is no digit at that position, and no less significant-nero digit, a space replaces the format
character.

As"9" above, but "0" replaces the digit if no significant digit is found giadtof spaceshen
to the left of the decimal pointo the right of the decimal poinif the digit paition is non
zero, then iteplaces the format character, otherwise remains 0.

Representthe sign.To the left of the decimadoint, if the number isiegative, it is left alone.
If the numbelis positive, it is replaced by a smalf the sign was already output, then it is
replaced by spac#.this appears to the right of the decimal point, it terminates the image.

As "-", but "+" appears insteaaf space on a positive number.
$, & %

These characters are used to indicate if the number is hex (or USA dollars), octal ofTlinary.

the left of the decimal pointf & significant digit can be matched to this posititie,digit is
output,otherwise gither the formatcharacteror a space is placed. #pace iplaced ifany of

the format char ac taleeadyg apgedrédtis ad &ror jf thisformai %6 hav e
character is used to the right of the decimal point.

196

March 6,

THE LANGUAGE PASCALNE 2011

To the left of the decimal pdinif the comma appears to the rightaofy nonzerosignificant
digits, itis outputasis. Otherwiseijt is either replaced by spacéal"$", "&" or "%" character
appears to the left of ithe format character will appediris an error if this formiacharacter is
used to the right of the decimal point.

May only appear on real numbers. This format charactwisysprinted,but specifieswhere
themantissaf a number appears, and where its fraction appears. The appearance of the decimal
pointwill enable or disable thigaction.If present, fractional digits are output, otherwise, the
fraction is discarded.

H.4 Recycling

By default,strings leaves it up to thprogrammeto determinewhendynamicstrings should be
recycled. To keep from losing sgaf'memory leaks"), the program must be careful to keep track of
all dynamic stringereatedandreturnthem to free storage vidspose.

strings can use a nested blocking system to automatidigyose of strings for you. The

openstring call begins a ne string block,andclosestring ends it. When a new block is opened,
any dynamic strings allocatederecordedn the block. Then, each of them are disposed of when the
block ends. Any number of block levels can exist. With no blocks in effezautomatic recycling
system is off, which is the stagérings starts in. When ablocks are closedtrings reverts to this
state. Because the dynamic stringsratarnedasa group,this systemcanbe more efficient than
returning thestrings one at arhe.

Useexportstring to completely remove givendynamicstringfrom the automatedecycling
systemTheupstring call takesa string, and moves it to the surrounding string block.

Thestrings block system has nothing to do wittocksin Pascalstrings blocks can cross blocks,
functions and even whole modules of Pascal. The two are entirely unrelated.

H.5 String container classes

The functionality of thestrings library is available in a&tringc class:

197

March 6,

2011 THE LANGUAGE PASCALNE

module strings;
class stringc (I: integer) ;

type stringcr: reference to stringc;

var val(l): string;

procedure Icases; begin end;
procedure ucases; begin end;
procedure clears; begin end;
fun ction len . integer;

overload procedure len(newlen: integer);

procedure copy(s: pstring);

overload procedure copy(var s: string);
overload procedure copy(var s: stringc);
overload procedure copy(s: stringcr);

operator := (S: string);

operator := (s: pstring);

operator := (s: stringc);

operator := (s: stringcr);

operator = (sd: string; ss: stringc);
operator := (sd: pstring; ss: stringc);
operator := (sd: string; ss: stringcr);

operator := (sd: pstring; ss: stringcr);
procedure cat(S string);

procedure cat(s: pstring

procedure cat(var s: stringc);

procedure cat(s: stringcr);

operator + (s: string): stringcr ;
opera tor + (s: pstring): stringcr;

operator + (var s: stringc);

operator + (s: stringcr);

function complc]p(s . string): boolean;
function comp[c]p(s: pstring): boolean;
function comp[c]p(s:[p]string): boolean;
function comp[c]p(s:[p]string): boolean;
function comp[c]p(s:[p]string): boolean;

function gtr[c]p(s : [p] string): boolean;
operator > (s . [p] string): boolean;
operator < (s . [p] string): boolean;
operator = (s [p]string): boolean;

198

March 6,

THE LANGUAGE PASCALNE 2011

operator >= (s: [p]pstring): boolean;

operator <= (s: [p]strin g): boolean;
function index[c]p(s . [p] string): integer;
procedure ex tract(l, r: integer);

procedure insert(s: string; p: integer);

procedure rep(s:string; r: integer);

operator * (r: integer) . stringcr;

procedur e trim ;

function words . integer;

procedure ex twords(l, r: integer);

procedure reads([f: text][var ovf: boolean]);

procedure ints(i: integer [; fl: integer] | [fmt: string]);

procedure reals(r: real [; f: integer] | [; fl: integer,; fr:
integer] | [; fmt: string]);

procedure reales(r real [; fl: integer]);
procedure hexs(w: Icardinal [; fl: integer]);
procedure octs(w: Icardinal [; fl: integer]);

procedure bins(w: Icardinal [; fl: integer]);

function intv [(var ovf: boolean)] : integer;
function hexv [(var ovf: boolean)] : Icardinal;
function octv [(var ovf: boolean)] : Icardinal;
function binv [(var ovf: boolean])] : Icardinal;
function realv :real;

procedure subst[c][all](s: [p]string; r: [p]string);

begin ! strings
end.

H.6 Exceptions
The following exceptions are generateginngs:

199

March 6,

2011 THE LANGUAGE PASCALNE

Identifier Meaning

NoStringBlock No string block is active.
OuterBlockFull No room in outermost string block.
CurrentBlockFull Current string block is full.
StringNil String passed is nil.
StringDestinationOverflow String was to large for destination.
IndexOutOfRange String index out of range.
NegativeRepeatCount Repeat count was negative.
WordIndexOutOfRange Word array index was out of range.
StringReadOverflow String was too large to read.
FormatToolLarge Format is too large for destination
InvalidFieldSpecification Field specified is invalid
NegativeValueNondecimal Radix was negative
NumberOverflowsFormat Number overflows space provided in format
string.
NegativeNotPlaced Negative sign not placed in format.
InvalidRealNumber Invalid realnumber.
InvalidFractionSpecification Invalid fraction specification.
InvalidRadix Invalid radix
InvalidintegerFormat Invalid integer format.
NumberToolLarge Number too large.
IntegerTooLarge Integer too large.
InvalidRealFormat Invalid real format.

strings establishes a series of exception handlers for each of the above exceptions during startup.
Exceptions not handled by a client progranswings will go back tostrings, thenprint a message
specific to the error, then the general exception will be thrown.

Not all procedures and functions throw all exceptions. See each procedure or function description for a
list of exceptions thrown. A client aftrings need only capture thexceptions occurring in the
procedure or function that is called.

H.7 Procedures and functions in strings

For each call that uses a file for input or output, the file cdafbeff. The default is thetandard
input or output file, accordingly.

functionlcase(c: char): char;
function Icase(s: gtring): pstring;
function Icases(s: string): pstring;
procedurdcasess: string);

Finds the lower case version of a character strings. This is eithereturned, or converted
in place.

ExceptionsStringNil

200

March 6,

THE LANGUAGE PASCALNE 2011

functionucase(c: char): char;
function ucase(s: §tring): pstring;
function ucases(s: string): pstring;
proceduraicasess: string);

Finds the upper case version of a charactarstrings. This is eithereturned, or converted
in place.

ExceptionsStringNil

procedure clears(var s: string);

Clearsstrings to all spaces. To set an entire string to another charaiter besides space,
userep below.

Exceptions: None

function len(s: [p]string): integer;

Finds the padded length of a strisgrhis is equivalent to the index of thast nonspace
character, or zero if there is none. Note that dynamic deighs are found via the system
functionmax.

ExceptionsStringNil

procedure copy(vad: string;s: [p]string);
functioncopy(s:[p]string): pstring;
procedure copy(var d: pstring; s: string);
operator.= (var d: string; s: pstring);
operator.= (var d: pstring; s: string);

Create a copy of the sourssstring in the destinatiod or returns it as a resulf.the
destination is fixed $ring, then it will be padded on the right with spaces to fout If the
destination or return type is dynamic, then a new string witlbated of the same length as
the source, and the source copied to thahercase of the last procedure, so@rce is taken

to be a padded stringnd the length is without padding. This procedure is used to copy from a

padded string to a dynamic string.

Note that the aggnment operator := is defin@tthe case of string to string assignmasito

copy the cotents of the strings if the strings are of equal length, and it is an error if they are
not of the same length. In the case of pstring to pstring, ISO 7185 defines only the pointer to

be copied. Thus, both the source and destination will simply poing teatine string.

ExceptionsStringNil, StringDestinationOverflow, CurrentBlockFull

201

March 6,
2011

THE LANGUAGE PASCALNE

procedurecatfvar d: string;s: string);
functioncat(sap]string; sb:[p]string): pstring;
operator+ (sa:[p]string; sb:[p]string): pstring;

Concatenate two stringsands, orsa andsb. For the first procedure, the padded destination
andsource are concatenated into the padded destin@itierfunctionconcatenateunpadded
strings to a dynamic result.

When concatenating two padded strings, it is not possible using at¢atenate with a space
or spaces between string®r this caseusea paddedstring insert instead, with the source
string inserted after the desired number of spaces.

ExceptionsStringNil, StringDestinationOverflow, CurrentBlockFull

function comypc](sa [p]string; sb: [p]string): boolean;
functioncomgc]p(sa sh:string): boolean;

Compare stringsa andsb. Returns true if the strings are equal. Comparesarasseseless,
andpadded or fixed length. Strings are equal only if they have the lsagie and content.

Note that the overload equals and not equals version of copy cannot be used with a ISO 7185
Pascal string, since those operators are already defined.

ExceptionsStringNil

functiongtrc](sa [p]string; sh: [p]string): boolean;
functiongtr[c]p(sa sh:string): boolean;

202

Compare stringb is greater tharistringsa. Returns true if the second string is gre#tan
thefirst. Comparegase or caseless, and padded or fixed length. Stringsagared from

left to right, until the first differece is found. Then, the second string is greater than the first if
the ord of its character is greater thhe first. In case one string is longer than the other, but
otherwise equal, thehorter string is less than the longer string.

This functioncanbeused to find less than, greater than or equal, andhasor equal by
arranging the operands:

gtr(a, b) a<b
gtr(b,a) a>b

not gtr(a, b) a>=b

not gtr(b,a) a<=b

ExceptionsStringNil

March 6,

THE LANGUAGE PASCALNE 2011

operator> (sa: string; sb: pstring): boolean;
operator> (sa: pstring; sb: string): boolean;
operator> (sa: ptring; sbh: pstring): boolean;
operator< (sa: string; sb: pstring): boolean;
operator< (sa: pstring; sb: string): boolean;
operator< (sa: ptring; sbh: pstring): boolean;
operator= (sa: stringsb: pstring): boolean;
operator= (sa: pstring; sb: string): boolean;
operator= (sa: ptring; sb: pstring): boolean;
operator>= (sa: string; sb: pstring): boolean;
operator>= (sa: pstring; sb: string): boolean;
operator> =(sa: ptring; sb: pstring): boolean;
operator<= (sa: string; sb: pstring): boolean;
operator<= (sa: pstring; sb: string): boolean;
operator<= (sa: ptring; sb: pstring): boolean;

Finds string greater than, less than, equals, not equals, greater sr andadéss than or equals

for any combination of pstring with string, or between two pstrings. The comparision is always
considering the case of the string characters. The length of the strings is according the absolute
length of the strings without comtgring padding.

For equals, two strings are equal if they have the same characters at the same positions, and if
they are the same length.

For other relations, the strings are examined character by character until a difference is found,
or the end of botktrings is reached. If a difference is found, the ordering of the character
found to be different determines the resulth# strings are found to be different lengths, the
longer string is greater than the shorter one.

Note that the operators for ISO88LPascal strings are defined within the ISO 7185 standard,
and only allow strings of the same length to be compared. Only in the above functions is the
length rule relaxed to allow strings of different lengths to be compared.

If a comparisoris needed thadoes not consider case, or uses the padded length definition of
strings is needed, use tbemp andgtr functions listed above.

ExceptionsStringNil

functionindeXc](sa [p]string; sb: [p]string): integer;
function indeXc]p(sa, sbstring): integer;

Findstheincidenceof the sourcestringsb in thestringsa. If the source string is found within
the destination, the index of its firdharacteis returned ptherwise0. The comparison may be
case or caseless. The padgedsionis for when the source string is padded.

ExceptionsStringNil

203

March 6,

2011 THE LANGUAGE PASCALNE

procedure extract(var d: Btg; s: string; |, r: integer);

functionextract(s{p]string; |, r: integer): pstring;
Extract a substring. The source strinffom the left index to the right inaés extractedand
either placed in the destinatidn or returned. It is an error dfither index is out of range, but
indexes | > r simply result in a nudtring. If the result is too large for the destination, an error
results. The procedukersion & for padded strings.

Common equivalents using extract are:

right(s,) extract(s, max(s) - I+1,max(s)) Get right string
left(s,)] extr act(s,1,l) Get left string
mid(s,l,r) extract(s, LI+r -1) Get mid string

ExceptionsStringNil, StringDestinationOverflow, IndexOutOfRange,
CurrentBlockFull

procedure insert(var d: stg; s:string; p: integer);

functioninsert(sa:[p]string; sb: [p]string; p: integer): pstring;
Insertsa substring from the souresanto the destinatiod. The procedure versias for
padded strings. If the source string is too long for the destinat@rror results.

ExceptionsStringNil, StringDestinationOverflow, IndexOutOfRange,
CurrentBlockFull

function rep(s: p]string; r: integer): pstring;

procedure rep(var d: string; s:string; r: integer);

operator* (var d: string; s:string; r: integer);
Repeats the source strirgyr times into the destinaticoh or the return stringThe procedure
version isfor padded strings. If the resulting string is tong for the destination, arror
results.

ExceptionsStringNil, StringDestinationOverflow, NegativeRepeatCount,
CurrentBlockFull

function trim(s: [p]string): pstring;

procedure trim(var d: string; s: string);
Trim leadng and trailing spaces frosetrings. and returns the result in stridgor the result
Theprocedurerersionis for padded strings. For padded strings, only the leading spaces are
affected.

ExceptionsStringNil, StringDestinationOverflow, IndexOutOfRange,
CurrentBlockFull

204

March 6,

THE LANGUAGE PASCALNE 2011

function words(s: [p]string): integer;
Returns a count of the number of space delimited words in the string

ExceptionsStringNil, WordIndexOutOfRange

functionextwords(s: [p]ging; |, r: integer): pstring;
procedure extwords(vart. string; s: string; |, rinteger);

Extracts the space delimited words from strings, between théeft to the right indicies
inclusive Returns the result id or as the result.

ExceptionsStringNil, StringDestinationOverflow, WordIndexOutOfRange,
CurrentBlockFull

procedure eads(f: text] var s: [p]string [; var ovf: boolean));

Read a line tastrings from text filef. The versions of this procedure that haveahflag
return it true if the input line overflowed the string. In this case, the sgirggurned
truncatedThe nonrovf versions otheproceduresimply throw an exception.

If the input file is not specified, then the standiardut file is used.

Note that the behavior of this function without the flag, and catching the
StringDestinationOverflow exception issimilar, but theovf flag version allows the partial
left hand side of the input to be recovered.

ExceptionsStringDestinationOverflow, CurrentBlockFull

procedurents(var s: string; i: integer [J:finteger] | [fmt: string]);
function ints(i: integef; fl: integer] | [fmt: string]): pstring;
Convert integer to strings. The versions with a fielfl format the number using tield

usinglSO 7185 Pascalles for output using a field. Negative (left justified) fields are also
allowed.

The versions with émt string copy the format string intberesultstring,then replace each
of the format characters with parts of the number.F58&format strings™ in the main text

ExceptionsFormatTooLarge, InvalidFieldSpecification, NumberOverflowsFormat,
NegativeNotPlaced, CurrentBlockFull

205

March 6,

2011 THE LANGUAGE PASCALNE

procedure reals(var s: string; r: real [; f: integer] | [; fl: integer; fr: intedgefint: string]);

function reals(r:reall; f: integer] | [; fl: integer; fr: integer[;| fmt: string]): pstring;
Convertrealr to strings with fractionf. The versions with a fielfl format the number using
thefield usinglSO 7185 Pascalles for output using a field. Negative (Ipfstified) fields
are also allowed.

Theversionswith afmt string copy the format string into the result stritigen replace each
of the format characters with parts of the number.F88&format strings" in the main text

ExceptionsFormatTooLarge, InvalidFieldSpecification, InvalidRealNumber,
InvalidFractionSpecification, NegativeNotPlaced, CurrentBlockFull

procedurerealesyar s: string; r: real [;If integer]);
functionreales(r: rea]; fl: integer): pstring;

Convert real to gring s using "economy" format. The real is printed in the minimmumber
of characters possible. If the decimal position caplaeedinto the number thenit is, and the
exponent is removed. All insignificant leading aralling zeros are removed, and if there are
no digits to the right dieft of the decimal point, then that is removed.

If the decimal point cannot be placedarthe number with less total charactéran a full ISO
7185 floating point number format, thére standardloating point format is used.

Theversions of this call with a fielfl fit the result into the field by paddingout with blanks,
either on thdeft for positive fields, or on the righidr negativefields. If the number does not
fit into the specified field, then alif the required parts of the number are prinkote thatif
thelSO 7185floating pointnumberis chosen as the shortest lengtimber, then the rulder
fields are identical to that of normal real output formats.

ExceptionsFormatTooLarge, InvalidFieldSpecification, CurrentBlockFull

procedureéhexgvar s: string; w: Icardindt fl: integer]);

proceduréhexs(vars: string; w: Icardinal fmt: string);

functionhexs(w: Icardinal; fl: integer): pstring;

function hexs(w: Icardinafmt: string): pstring;
Convertcardinal w to strings, using the hexadecimal radix system. The versionsawiidid
fl format the number using the field usit80 7185 Pascalles for outpuusing a field.
Negative (left justified) fields are also allowed.

Theversionswith afmt string copy the format string into the result stritiggn replace each
of the format charaets with parts of the number. S8 "format strings"in the main text

ExceptionsFormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

206

March 6,

THE LANGUAGE PASCALNE 2011

procedureocts(\ar s: string; w: Icardind} fl: integer]);
procedureocts(vars: string; w: Icardinal fmt: string);
functionocts(w:lcardinal[; fl: integer): pstring;
function octs(wIcardinal fmt: string): pstring;
Convertcardinal w to strings, using the octal radix systeffhe versionswith afield fl

formatthe number using the field usif§O 7185 Pascadles for outputsing a field.
Negative (left justified) fields are also allowed.

The vergons with afmt string copy the format string intberesultstring,then replace each
of the format characters with parts of the number.F68é&format strings" above.

ExceptionsFormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

procedurebing\var s:string; w: lcardinal; fl: integer));

procedurebins(vars: string; w: Icardinal fmt:string);

functionbins(w: Icardinal; fl: integer): pstring;

function bins(w: Icardinalfmt: string): pstring;
Convertcardinal w to strings, using the binary radigystem. The versions withfield fl
format the number using the field usit80 7185 Pascallesfor outputusing a field.
Negative (left justified) fields are also allowed.

Theversionswith afmt string copy the format string into the result strithgan replace each
of the format characters with parts of the number.F68é&format strings" above.

ExceptionsFormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

proceduravrited(var f: text] i: integer; fmt: string);

Convertinteger i to character format and output to fileusing the decimal radix system.
Decimalnumbersarewell covered by the normal ISO 718ascaktandard write formats.
However, these routines add image formatting to them.

Theversionswith afmt string copy the format string into the result strithggn replace each
of the format characters with parts of thember. Seél.3 "format strings” in the main text

If the output file is not specified, then the standandput file is used.

ExceptionsFormatTooLarge, InvalidFieldSpecification, NumberOverflowsFormat,
NegativeNotPlaced, CurrentBlockFull

207

March 6,
2011

THE LANGUAGE PASCALNE

procedure writeffar f: text;] r: real; fmt: string);

Convertreal r to strings. Real numbers are well covered by the normal ISO Pe&sal
standard write formats. Howevéhese routines add image formatting to them.

Theversionswith afmt string copy the format string into the result strithggn replace each
of the format characters with parts of the number.Fe68&format strings" in the main text

If the output file is not specified, then the standard output file is used.

ExceptionsFormatTooLarge, InvalidFieldSpecification, InvalidRealNumber,
InvalidFractionSpecification, NegativeNotPlaced, CurrentBlockFull

procedure writergyar f: text] r: real; fl: integer);
procedurewritere(var f: text] r: real);

Write real r to the "economy real" format to either the specified outpuf fiter to the
standard output. The economy real format is explained iretides routines descriptions.

The versions with a fieldl fit the output tahefield usingstandard?ascahe rules, including
negative fields.

If the output file is not specified, then thersdardoutput file is used.

ExceptionsFormatTooLarge, InvalidFieldSpecification, CurrentBlockFull

proceduravriteh([varf: text] w: Icardinall; fl: integer]);
procedure writeljyar f: text;] w: lcardinaj fmt: string);

208

Write cardinal w to either thespecified filef, or the standardutput file, usingthe
hexadecimal radix system. The versions with a fiefdrmat the number usinpe field using
standard Pasdak rules for output using a fieltNegative(left justified) fields are also
allowed.

The versionswith afmt string copy the format string into the result strithggn replace each
of the format characters with parts of the number.F68&format strings'.

ExceptionsFormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

March 6,

THE LANGUAGE PASCALNE 2011

procedurewnriteo([var f: text] w: Icardinal[; fl: integei);
procedure writeggar f: text;] w: Icardind; fmt: string);

Write cardinal w to either the specified filg or the standardutput file, usingthe octal
radix system. The versions with a fididformat the number using tliield using standard
Pascdhe rules for output using a field. Negative (Igfstified) fields are also allowed.

Theversionswith afmt string copy the format string into the result stritigyn replace each
of the format characters with parts of the number.F68é&format strings" above.

ExceptionsFormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

procedurewnriteb(var f: text] w: Icardinal[; fl: integel]);
procedure writeljyar f: text] w: Icardinal fmt: string);

Write cardinal w to either the specified file or the standardutput file, usingthe binary
radix system. The versions with a figdldormat thenumber using théeld using standard
Pascdhe rules for output using a field. Negative (Igfstified) fields are also allowed.

Theversionswith afmt string copy the format string into the result stritigen replace each
of the format characters witharts of the number. Sée3 "format strings" above.

ExceptionsFormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

function intv(s:[p]string[; var ovf: boolea#): integer;

Find valueof strings with default decimal format. The number contained insthieg, in

valid Pascal signed number format, is parsed and the ratlu@ed.The numbercanbe

signed. Leading and trailing spaces are ignored, but elxétacters past a valid number result
in an error.

If the number is unsigned, and has a valid radix specifier, one 0&'$'9r "%" prependedo

it, then that radix overrides thefdalt decimal radix. Ithis override effect is not desired, then
the number should be checked $oichradix specifications usingndex, and an error
generated.

Theversionsof this call that feature thevf flag do not produce an errortiie number isdo
large to convert, but instead set thd flag, andthentheresult is undefinedNote that this is
the same behavior aatching an exception for the nonf version.

ExceptionsinvalidRadix, InvalidintegerFormat, NumberTooLarge, StringNil

209

March 6,

2011 THE LANGUAGE PASCALNE

function hexv(s{p]string[; var ovf: boolean): Icardinal

Find valueof strings with default hexadecimal format. The number containdterstring, in
valid Pascal signed number format, is parsedthedaluereturned. The number may not be
signed. leading and trailing spaces are ignotmat, extra characters past a valid number result
in an error.

If the number has a valid radix specifier, one of "$", "&" or "#tEpendedo it, thenthat
radix overrides the default hexadecimal radix. If thisrrideeffect is not desired, then the
number should be checked for such radix specifications using index, and an error generated.

Theversionsof this call that feature thevf flag do not produce an errortiie number is too
large to convert, but insad set thevf flag, andthentheresult is undefined (and probably is
garbage)Note that this is the same behavior as catching an exception for twarheersion.

ExceptionsinvalidRadix, InvalidintegerFormat, NumberTooLarge, StringNil

function octys: [p]string[; var ovf: boolear): Icardinal
Find valueof strings with default octal format. The number contained ingtrieng, in valid
Pascal signed number format, is parsed and the xetiwened.The number may not be signed.
Leading and trailingpaces are ignored, but exttaaracters past a valid number result in an
error.

If the number has a valid radix specifier, one of "$", "&" or "ftEpendedo it, thenthat
radix overrides the default octal radix. If this override effectot desiredthen the number
should be checked for such radpecificationaising index, and an error generated.

Theversionsof this call that feature thevf flag do not produce an errortlie number is too
large to convert, but instead set thd flag, andthentheresult is undefined (and probably is
garbage)Note that this is the same behavior as catching an exception for tiwarhwersion.

ExceptionsinvalidRadix, InvalidintegerFormat, NumberTooLarge, StringNil

210

March 6,

THE LANGUAGE PASCALNE 2011

function binv(s]p]string[; var ovf: boolean]): Icardinal

Find valueof strings with default binary format. The number contained indtmag, in valid
Pascal signed number format, is parsed and the xetiwened.The number may not be signed.
Leading and trailing spaces are ignored, but etteacters past a valid number result in an
error.

If the number has a valid radix specifier, one of "$", "&" or "Bt&pendedo it, then that
radix overrides the default binary radix. If this override effectot desired, then the number
should be chded for such radispecificationaising index, and an error generated.

Theversionsof this call that feature thevf flag do not produce an errortiie number is too
large to convert, but insae set thevf flag, andthentheresult is undefined (and gioably is
garbage)Note that this is the same behavior as catching an exception for twarheersion.

ExceptionsinvalidRadix, InvalidintegerFormat, NumberTooLarge, StringNil

function realv(s{p]string): real;
Find value of real number strirgy Thestring must contain a valid Pascal formedl number.
Leading and trailing spaces are ignored, but extra charaetsts valid number result in an
error.

ExceptionsinvalidintegerFormat, IntegerTooLarge, InvalidRealFormat, StringNil

procedure subg][all](var s: $ring; m: string; r: string);

function subdgt][all](s: [p]string; m: [p]string;r: [p]string): pstring;
Substitutes string within another string. The source stisrig searched fathe match string
m. If found, the match string is remed, andhereplacemenstringr takesits place. The
string lengths and positions are readjustedhfor size difference between the match and
replacement string3.he final string is either returned in the streygr returned as the result.

Several vaations exist. The matching process can be case sensitive, or notmalsubst
calls, only the first match is replaced. In the "all" variati@iisjatching substrings are
replaced. Replacement strings aotsearchedhn the "all" variations. Thenatch process skips
over the replacement string.

ExceptionsStringNil

211

March 6,

2011

THE LANGUAGE PASCALNE

procedure openstring;

Causes a new string block level to be created. All strings that were dynaraltzadgted
within strings will be recorded within the new block, adsposedf automatically on
closestring.

Exceptions: None

procedure closestring;

Removes the current string block levieachstringthatwasallocatedandrecordedn the
current block is disposed of, and the surrounding string bibitlexists, is restored. All
strings dynamic allocations will then becordedn that block.

It is an error if no block exists to close.

ExceptionsNoStringBlock

procedure exportstring(pstring);

Removeghe indicated string completely from the current string block. Only tharent
block is searched. It is only possible to export a string from the blegscreated in. If the
string does not exist in the current block, no eresults.

ExceptionsNoStringBlock

procedure upstring(pstring);

212

Moves the indicated stringfrom the current block to the surrounding blo€kestring is
removed from the current block, and recorded in the surrounding Ifidtodxists. If the
string does not exist in the current block, @uarounding block does not exist, no error
results If the surrounding block is full, aarror results.

ExceptionsOuterBlockFull

March 6,

THE LANGUAGE PASCALNE 2011

[Annex |I: Extended mathematics library

ISO 7185Pascakept the number of implemented transcendental functions limited to simplfy the base
implementation. This library introduces several of the more comartamsiongor math capability,

and alsadefines some special constants used in the IEEE 754 stand#oafiolg point numbers,

which is most often used as the basis for computer floating point.

At this writing, IEEE 754 is has virtually taken over as the standard for all hardware implemented
floating point math, as well as most software implemented fipgioint math. However, there is little

in this library that cannot be interpreted for other formats as well. In fagtatineal function, that

returns the exact code for a given NaN, is the only truly IEEE 754 dependent function in the library.
This may e important for legacy implementions that were created before the standard, or for
simplified hardware and software implementations using formats different from IEEE 754.

.1 Functions

The following functions exist ithemath library.

213

March 6,
2011

THE LANGUAGE PASCALNE

sign(x) Find signx

exp2(x) Power function, base @

explo(x) Power function, base 20

log2(x) Logarithm, base

log10(x) Logarithm, base 18

tan(x) Tangentx

cot(x) Cotangenk

arcsin(x) Arc Sinex

arccos(X) Arc Cosinex

arccot(x) Arc Cotangenk

arctan2(x, y) Arc tangent correctefbr other quadrants
pow(X,y) X to the power y

sinh(x) Hyperbolic Sinex

cosh(x) Hyperbolic Cosin

tanh(x) Hyperbolic Tangent

coth(x) Hyperbolic Cotangent

arcsinh(x) Inverse Hyperbolic Sine

arccosh(x) Inverse Hyperbolic Cosire

arctanh(x) Inverse Hyperbolic Tangert

arccoth(x) Inverse Hyperbolic Cotangent
pinfinity(x) Test if positive infinityx

ninfinity(x) Test if negative infinity

nan(x) Test if x is a NaN

gnan(x) Test if x is a quieNaN

snan(x) Test if x is a signaling NaN

nanval(x) Returns the code for a NaiN

frac(x) Returns the mantias or fractional pardf x
expo(x) Returns the exponent of x
makereal(e,f) Make a real from exponent and fractieand f

Unless otherwise specified, all of the functions take and retreigks. This means that they can both

convert from any oreal, real orIreal, and have their results converted to same.

1.2

Further trancendentals

exp2, expl0, log2, log10, tan, cot, arcsin, arcos, arccot, arctan2 andpow are provided.

Many of these were not included in the ISO 7185 standard because they can be calculated from the
other, ISO 7185 functions. They are included here botbdoveniencend becausk t possible they

can be calculated with greater precision bgwtine specifially created for that function.

1.3

Hyperbolics

The hyperbolic functionsinh(x), cosh(x), tanh(x) coth(x), arcsinh(x), arccosh(x),

arctanh(x), andarccoth(x) give the transcendentginctionscalculatedalong a hyperbola, instead

of a circle.

214

March 6,

THE LANGUAGE PASCALNE 2011

.4 Special floating point values

A number can be tested for positive infinity wghnfinity(x), and negative infinity witminfinity(x).
If the implementation does not discriminate between positidenegative infinity, then all infinities
are considered positive.

Predefined constants are availablggbandeu (f or Eul er 86s number). These ¢
in their maximum precision deeals.

1.5 NaN functions

The NaN fuctions return true ifi¢ number is the specified Nahan(x) tests for any class of NaN.
gnan(x) tests only for quiet, or nesignaling NaNssnan(x) tests for signaling NaNs.

For any NaN value, the functioranval(x) returns the exact NaN numb@ihis is the fraction value
without the hidden and signal bits.

Note that the Pascaline implementation may treat NaNs as errors, or only return NaNs to the program
by special option.

The exact meaning of a particular NaN code is implementation dependent. It is also possible for the
NaN codes to have different meanings depending on if a gangesignaling NaN is indicated.

Note that finding the exacbde of a NaN witmanval is specific to the IEEE 754 standard.

1.6 Utility functions

sign(x) returns the sign of either real or integeasis-1 for negative, and +1 for positivEhe function
expo(x) returns the binary (base 2) exponent of the numlzer an integeit is a signed number
expressing the number of bingsgint dividing the whole part of the number from the fractional part,
expressed as an offset from the extreme right side of the number.

The functionfrac(x) returns thdcardinal value of themantissa foreal numbex. If the mantissa of
x has more significant digits than can be containetaydinal, an error results.

Theprocedurenakereal(e, f) expects an exponent value as returned bgxip® function and a
mantissa value as returned by thec function and unites them to make a real floating point result.

1.7 Exceptions in the math library

The following exceptions are thesm by procedures and functionsnmath.

Note that many exceptions in the math library are the same as standard Pascaline extépiens
O.

215

March 6,

2011 THE LANGUAGE PASCALNE

ZeroDivide Zero divide

RealOverflow Real overflow.
RealUnderflow Real underflow.
RealProcessingFault Real processing fault.
InvalidFieldSpecification Invalid field specification.
InvalidRealNumber Invalid real number.
InvalidFractionSpecification Invalid fraction specification;
InvalidRealFormat Invalid real format.
ArgumentNegative Negative argument is invalid
ArgumentZero Zero argument is invalid
ArgumentRange Argument out of range

math establishes a series of exception handlers for each of the above exceptions during startup.
Exceptions not handled by a client progranmath will go back tomath, then print a message
specific to the error, then the general exception will be thrown.

Not all procedures and functions throw all exceptions. See each procedure or function description for a
list of exceptions thrown. A client of math need only capture the exceptions occurring in the procedure
or function that is called.

1.8 Functions, procedures and constants in the math library

functionsign(x Ireal): integer;
Find sign ofx. Returns either al for negatve, or +1 for positive.

Exceptions: none

functionexp2(x Ireal): integer;
Power function, base Zomputes 20 the powek, the base 2xponential ok.

Exceptions: none

functionexpl0(x Ireal): Ireal
Power function, base 1€omputes 10 to the poweythe base 10 exponentialxf

Exceptions: none

216

March 6,

THE LANGUAGE PASCALNE 2011

functionlog2(x Ireal: Ireal;

Logarithm, base . 2Z2omputes the basddyarithmof x. If is an error if thex is negative or
zero.

ExceptionsArgumentNegative, ArgumentZero

functionlogl10(x Ireal): Ireal;
Logarithm, base 10Computes the base 10 logarithnxoft is an error ifx is negative or zero.

ExceptionsArgumentNegative, ArgumentZero

functiontan(x Ireal): Ireal;
Tangent Finds the tangent of, wherex is in radians.

ExceptionsRealOverflow

functioncot(x Ireal): Ireal,
CotangentFind the cotangent of, wherex is in radians.

Exceptions: none

functionarcsin(x Ireal): Ireal;
Arc dne. Finds the arc sine af x must be in the rangé to 1.

ExceptionsArgumentRange

functionarccos(x Ireal): Ireal,
Arc Cosine Finds the arc cosine &fin radiansx must be in the rangd to 1.

ExceptionsArgumentRange

functionarccot(x Ireal): Ireal;
Arc CotangentFinds the arc cotangentxin radiansx must be in the rangd to 1.

ExceptionsArgumentRange

217

March 6,

2011 THE LANGUAGE PASCALNE

functionarctan2(x, ylreal): Ireal,

Arc tangent corrected for other quadraf@smputes the value of tlaec tangent oy/x using
the signs of both arguments. If is an error if both arguments are zero.

ExceptionsArgumentZero

functionpow(x Ireal;y: linege): Ireal;
X to the powey. Calculatex raised to the powey. It is an error ik is negative.

ExceptionsArgumentNegative, ArgumentRange

functionsinh(x Ireal): Ireal;
Hyperbolic SineFinds the hyperbolic sine af

ExceptionsArgumentRange

functioncosh(x Ireal) : Ireal,
Hyperbolic CosineFinds the hyperbolic cosine »f

ExceptionsArgumentRange

functiontanh(x Ireal) : Ireal;
Hyperbolic TangentFinds the hyperbolic tangentof

Exceptions: none

functioncoth(x Ireal) : Ireal;
Hyperbolic Cotangentinds the hyperbolic cotangentxaf

Exceptions: none

functionarcsinh(x Ireal) : Ireal,
Inverse Hyperbolic Sind=inds the hyperbolic arc sinef

Exceptionsnone

218

March 6,

THE LANGUAGE PASCALNE 2011

functionarccosh(xIreal) : Ireal;

Inverse Hyperbolic Cosiné&inds the inverse hyperbolic cosinexofinds the hyperbolic arc
cosine ofx. x must be greater or agl to 1.0.

ExceptionsArgumentRange

functionarctanh(xIreal : Ireal;

Inverse Hyperbolic TangerEinds the inverse hyperbolic tangenkok must be less than or
equal to 1.0.

ExceptionsArgumentRange

functionarccoth(x Ireal) : Ireal;
InverseHyperbolic Cotangenfinds the inverse hyperbolic cotangenk of

Exceptions: none

functionpinfinity(x: Ireal): boolean
Test if positive infinity Returns true ik is positive infinity, otherwise false.

Exceptions: none

functionninfinity(x: Ireal): boolean;
Test if negative infinity Returns true ik is negative infinity, otherwise false.

Exceptions: none

functionnan(x) boolean;

Test ifx is a NaN Returns true ik contains a NaN or Not A Number code, either quiet or
signaling, otherwise false.

Exceptions: none

functiongnan(x: Ireal): boolean;
Test ifx is a quiet NaNReturns true ik contains a quiet NaN, otherwise false.

Exceptions: none

219

March 6,

2011 THE LANGUAGE PASCALNE

functionsnan(x Ireal): boolean;
Test ifx is a signaling NaNReturns true ik contains a signaling NaN, otherwise false.

Exceptions: none

functionnanval(x Ireal): Icardinal;

Returns the code for a NaReturns the code for the Nad\lwithout the quiet or signaling
flag. It is an error ik is not a NaN.

Exceptions: NotANaN

function frac(x Ireal): Icardinal;

Returns the mantissa, or fractional park o he number returned is with the binary point at
the far right of the number.

Exceptions: none

functionexpo(x Ireal): linteger;

Returns the exponent gf The exponent is adjted so that the mantissa has the binary point at
the extreme right of the number, that is, the exponent expresses the number of binary digits to
the left or right of that position to represent the numivéh positive exponents moving the

binary point tathe right, and negative exponents moving the binary point to the left

Exceptions: none

functionmakereal(elinteger;f: Icardina): Ireal;
Make a real from exponent and fractidxccepts an exponestand fractiorf with the fraction
having a binary pat at the extreme right side, and the exponent as an offset to that. It is an
error if theresulting number cannot be representedeaal format.

ExceptionsRealOverflow

220

March 6,

THE LANGUAGE PASCALNE 2011

J Annex J: Terminal Interface Library

Standard ISO 718Bascal uses an I/O paradigm that is serial, or wmnrectly"line oriented".Each
line is built up in sections, then output to th@ device with an appended "end of line". The end of
line causeshecurrentline to be completed, and the next line begin

The next level of paradigm is the presentation of lines onto a 2d text surface. This can simply be an
emul ation of the serial only system or Avirtual
The next step is to allow full addressing of Buesurface and allowing text to be placed anywhere

within that surface. To this is added colors, different text presentation modes, and finally advanced,
multiple device input.

terminal starts inISO 7185 Pascaompatible mode, then allows the programmimve to a full

addressable surface without automatic scrolling. In advanced teodenal emulatesaninfinite

virtual surface where the terminal exists as a window clipped to the origin. This is the most consistent
model of such a surface.

Becausderminal overrides the interface between the program and the operating system it runs on, all
of the ISO 718%ascallefined serial I/0O works compatibly to therminal presented surface. It is
also modal, meaning that changes to character modes affecttadk foutput to the terminal.

terminal introduces the concept that several devices can be used for input at the same time. The
normal user keyboard is supplemented by a mouse, timers and a joystick. These are all implemented
via theevent concept, which umés the input and removes the need to poll multiple devices.

terminal gives a set of logical events for common corkels from the keyboard that allow the
program to avoid direaecognitionof implementation dependent key codes.

In addition to the defdupresentation surfacégrminal is capable of switching between multiple
display surfaces. This capability has several uses.

J.1 ISO 7185 Pascal Compatible Mode

To write datato theterminal screen, ISO 718Bascalvrite calls are used. Avrite statement places
each character on the screen, then mtwesursorto the right, obeying any automatic line wrapping.

If awriteln is called, then theursor is returned to the left side of the screen, one line down. If the end
of theline is reached, ad automatic scrolling is enabled, then the screerswitll upwards.

Thepage procedure, which causes a printentove to the next (blank) page.emulatecby waiting
for the user to acknowledge the contents ofstireen, thethe screen is cleareddthe cursor moves
to the upper left hand position (1,1)

J.2 Basic Cursor Positioning

The cursor is the point where texeisterecontothescreenl t usuallymarkedwith a blinking block
or underline. To move the cursor one charactedapn, left or right, theip, down, left andright

procedures are usetio movethe cursoranywhereon the screen, theursor call is used. To find out
wherethe cursor currently is, the functionarx andcury return the current x angcoordinates of it.

Thecharacter cells on the screen are legbdrom 1 to N, where in & is the left side of the screen, and
N is the ridnt side of the screen. Inlyis the top of the screen, and Nhg bottom of the screen.

221

March 6,

2011 THE LANGUAGE PASCALNE

Theactualsize of the screen is system sfiecand can be found hyjaxx andmaxy, which return
the maximum index in x and y for the screen. Whésrminalis emulated in a windowing system, it
usually by default 25 lines of 80 characters each, because that was a very common size in terminals.

Thecursor can be moved to the home, or 1,1 position, biidinee procedure. The entire display can
be cleared with the cursor moved to the home position byl&a procedure.

J.3 Automatic Mode

Automatic mode is the mode that cautssninal to scroll upwards when thHettomof the screen is
reached, and agoln is written.Line wrap, or the wrapping of characters back to the left at the next
line if text is written offtheright hand side, is an automatic mode. The automatic mode is useful f
emulatinglSO 7185 Pascalerial mode programs, but rapidly gets in the way for advanced programs.

Automatic mode can be turned off wilito. Turningauto off converts (omctually, reveals) the
screen as a character surface that goes-moaxint to +maxint in both x and y, and has its origin at
1,1, and the screenas'viewport" on this surface that extends from 1,Inaxx, maxy. Text can be
drawn anywherdncluding off screen, but the characters outside of the Iriatax, maxy box will
notbeseea, and are "clipped out" of view. It can be determined ifdiesor lies within the screen's
bounds bycurbnd.

The "virtual screen" that appears withto off is a good match for today's windowing environments.
Text can be drawn withowmtorrying if it will cause the line to wrap, or the screen to scéaid if a
line of text happens to extend off the screen, that does not cause an error.

J.A Tabbing

terminal will keep track of tabs set in x, for any character position. Wheminal starts, the tabs
are séto every 8th position on the screen, i.e., positiong, 17, etc.

Outputting a tab characteiill cause the cursor to move to the next tab position on the line. If the
cursor is at a tab position, then it will move to tlextone.Tabpositionscanbe set bysettab, and
cleared byrestab. clrtab clears all set tabs.

J.5 Scrolling

The screen can be scrolled by #wroll procedurewhichimplementsarbitrarydirectionscrolling. If
thex value given is positive, then the screen datalls up. If the x vale is negativethenthescreen
datascrollsdown.If the y value is positive, the screen data scrolls left, and ifdgative, the screen
data scrolls right. If either x or y is 0, then there isravement in that direction.

J.6 Colors

Therearetwo colors to set for text. One is the foreground, and the otltlee isackground. The
foreground is the color withithe characteitself. Thebackgrounds the spacebehind the character.
The possible colors are chodeom the two sets of primary colors:

type color = (black, white, red, green, blue, cyan, yellow,
magenta);

Characters are written in the currently set foregramtbackgrouncolors.The foreground color is
set byfcolor, and the background color bgolor.

222

March 6,

THE LANGUAGE PASCALNE 2011

Thecurrentbackgrounctolor is dso used to set the color of any blankedaretas caused by other
commands. Foexampletheclear procedureclearsthe screerno the background color. Scrolls, either
programmer selected or automatic, use the background color for any uncovered asgadthaked
out.

J.7 Attributes

terminal provides many attribute controls, each of which can be switched onindivitiually.

Attribute Result |

reverse Enables reverse video.

underline Underlines each character.

superscript Gives a smaller and higheharacter for
subscripting.

subscript Gives a smaller and lower character for
superscripting.

italic Prints in italic or slanted characters.

bold Prints in extra dark, or bold characters.

Strikeout Prints characters with a horizontal bar through
them.

blink Blinks each character on and off.

For programs to maintain portability, the programstevuldassumewo things.First, that only a
single attribute at one time can be 3étis would mean that setting a second attribute after a first one
is set,would cause the first attribute to be unset.

Secondthe programmer should nassume that any one particular attribute is available. Many older
terminalsdo have more than one or two attribut8siperscript, subscript, italic andstrikeout
arerare in standalone terminalBuperscript, subscript, italic andbold are rare today on

graphical windowing systems because they #ftegeometryof the characters such that it is difficult
or impossible to emulate a character cell in such a sybténk is also rare in graphicalstems
because of the computational work required.

Forthis reason, there is a general ma&tandout, that can be enabled or dided just like an
attribute. Whastandout doesis enable an attribute the nenal doeshave,so thatthe program does
not have to select a specific attribute.

J.8 Multiple Surface Buffering

terminal implementghe ability to havéogical screens in buffers. Thisasopyof thecharacter&n
thescreensavedn a buffer of the same size as #weeenLogical buffers have many useédultiple
screensanbekept,andquickly switchedto the user. A program, like an editor, that wants to save the
screerms it was before it started, can switch away to a second screen tovdikjtthen switch bac

to the original screen to restore its contents. Buffers can also be used to accomplish animation.

The select procedure sets both the current screen to be displayed, dhesszerthat updates are
to go to. Wherterminal starts, these are both sethhesame screen, number 1. Any screen can be
selected, and the displagreerandthe update screen can be different. If the update screen is not the

223

March 6,

2011 THE LANGUAGE PASCALNE

one in display, then all of the write statements will pleltaracterén the buffer, but not on screen.
This "split mode" is typically used for animation.

Implementations are free to limit the total number of logical screens available. The user should assume
no more than 10 logical screens are available.

J.9 Advanced Input

terminal implementsanadvanced outpunodel that is upward compatible with #80 7185 Pascal
serial model. Similarly, an advanced input mod@ls®implementedhatmeets the needs of newer
systems.

Today'sdeal with multiple input devices, not just the keybo&evices include a mouse, a joystick,
timers, andtherfuture devices.The standardnethod on small computers was to poll for such devices,
or accepinterrupts from them. The difficulty with those solutions was that these meditbdst fit

well with madern multitasking systems.

Onemethod would be to use a multitask thread per device. However, this complicates small programs
unnecessarily. The common solution todaleients",andthe"eventloop”. The event model takes
advantage of the fact that useput devices don't generate a lot of high bandwidth data. Efitte
devicesattachedo the input from the user have their data packaged as "messages"axehsciall

records, which are the description of the event. These events apdbedin aqueue,and the

program pulls the events, one at a time, frongiiieue and acts on them.

The description of an event record is:

224

March 6,

THE LANGUAGE PASCALNE 2011

module terminal ;

const maxtim = 10; { maximum number of timers available }

type

joyhan = 1..4; { joystick handles }

joynum = 0..4; { number of joysticks }
joybut = 1..4; { joystick buttons }

joybtn = 0..4; { joystick number of buttons }
joyaxn = 0..3; { joystick axies }

mounum = 0..4; { number of mice }
mouhan = 1..4; { mouse handles }

moubut = 1..4; { mouse buttons }

timhan = 1..maxtim; { timer handle }
funky =1..100; { function keys }

{events}

evtcod = (etchar, { ANSI character returned }
etup, {cursor up one line }
etdown, {down one line}
etleft, {left one character}
etright, {right one character }
etleftw, {left one word }
etrightw, {right one word }
ethome, {home of document}
ethomes, {home of screen}
ethomel, {home of line }
etend, { end of document }
etends, {end of screen}
etendl, {end of line }
etscrl, { scroll left one character }
etscrr, { scroll right one character }
etscru, {scroll up one line }
etscrd, { scroll down one line }
etpagd, {page down }
etpagu, {page up}
ettab, {tab}
etenter, {enterline}
etinsert, {insert block }
etinsertl, { insert line }
etinsertt, { insert toggle }
etdel, {delete block }
etdell, {delete line}
etdelcf, { delete character forward }
etdelcb, { delete character backward }
etcopy, {copy block}
etcopyl, {copy line}

A

March 6,

2011 THE LANGUAGE PASCALNE

etcan, {cancel current operation }
etstop, {stop current operation }
etcont, { continue current operation }
etprint, { print document }

etprintb, { print bl ock }
etprints, { print screen }

etfun, {function key }

etmenu, {display menu }

etmouba, {mouse button assertion }
etmoubd, {mouse button deassertion }
etmoumov, { mouse move }

ettim, {timer matures }

etjoyba, {joystick button assertion }
etjoybd, {joystick button deassertion }
etjoymov, {joystick move }

etterm); {terminate program }

{ event record }
evtrec = record
case etype: evtcod of {eventtype}

{ ANSI character returned }
etchar: (char: char);

{ timer handle that matured }

ettim: (timnum: timhan);
etmoumov: (mmoun: mouhan ; { mouse number }
moupXx, moupy: integer); { mouse movement }
etmouba: (amoun: mouhan; { mouse handle }
amoubn: moubut); { button number }
etmoubd: (dmoun: mouhan; {mouse handle }
dmoubn: moubut); { button number }
etjoyba: (ajoyn: joyhan; {joystick number }
ajoybn: joybut); { button number }
etjoybd: (djoyn: joyhan; {joystick number }
djoybn: joybut); { button number }
etjoymov: (mjoyn: joyhan; {joystick number }
joypx, joypy, joypz: integer); { joys tick
coordinates }
etfun: (fkey: funky); {function key }
etup, etdown, etleft, etright, etleftw, etrightw, ethome,
ethomes, ethomel, etend, etends, etend|, etscrl, etscrr,

etscru, etscrd, etpagd, etpagu, ettab, etenter, etinsert,

etinsertl, etinsertt, etdel, etdell, etdelcf, etdelcb, etcopy,
etcopyl, etcan, etstop, etcont, etprint, etprintb, etprints,
etmenu, etterm: (); { normal events }

226

March 6,

THE LANGUAGE PASCALNE 2011

{ end }
end;

begin !terminal
end.

The next event for the program is retrieved viaghent call. The basis of theventsystem is that
events must be retrieved often enough that the input gleasgenot fill up. Thus, an "event model"
program willbe centeredaroundthe event loop that gets the next event, acts on it, and returns to the
top for moreevents.

An important principle of event handling is that events that are not defined for a compliant program
are ignored. That is, if an event not defifiedterminal is received, it will be ignored. This is the
basis of upward compatibility. If a new event is defined, existing programs will simply ignore it.

A typical event loop is as follows.
program p;
joins terminal ;
var er: evtrec;
begin
repeat

terminal .event(er); ! get next event
case er.etype of

etchar: if er . char =hed g bperform character action
etmoumov: ! perform mouse move action

else ! do nothing
end
until er.etype = etterm ! until user orders terminate
end.

Note the final default case that does nothing.

J.10 Event callbacks

An alternative to receiving events as records are the event based virtual methods:

227

March 6,
2011

module terminal ;

virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure

228

evchar(c:

THE LANGUAGE PASCALNE

evtim(t: timhan);

char); beginend ;
beginend ;
evmoumov(m: mouhan); beginend ;
evmouba(h: mouhan; b: moubut); beginend ;
evmoubd(h: mouhan; b: moubut); beginend ;
evjoyba(h: joyhan; b: joybut); begin end;
evjoybd(h: joyhan; b: joybut); beginend ;

evjoymov(h: joyhan; X, y, z: integer);

begin en

evfun(k: funky); beginend ;
evup; beginend ;
evdown; beginend ;

ev left; beginend ;
evright; beginend ;
ev leftw; beginend ;
evrightw; beginend ;
evhome; beginend ;
evhomes; beginend ;
evhomel; beginend ;
evend; beginend ;
evends; beginend ;
evendl; beginend ;
evscrl; beginend ;
ev sCIT; beginend ;
evscru; beginend ;
evscrd; beginend ;
evpagd; beginend ;
evpagu; beginend ;
evtab; beginend ;
eventer; beginend ;
evinsert; beginend ;
evinsertl; beginend ;
evinsertt; beginend ;
evdel; beginend ;
evdell, beginend ;
evdelcf; beginend ;
evdelcb; beginend ;
evcopy; beginend ;
evcopyl; beginend ;
evcan; beginend ;
evstop; beginend ;
evcont; beginend ;
ev print; beginend ;
ev printb; beginend ;
ev prints; beginend ;
evmenu; beginend ;
evterm; beginend ;

d,

March 6,

THE LANGUAGE PASCALNE 2011

begin !terminal
end.

Each event procedure corresponds to an event froevtihec record. Wherevent has an event to
return to the calling program, it first calls the default iempéntation of the corresponding virtual
procedure, which flags that the event is unhandled, and should be returned to the caller.

The alternative method is activated by overriding the virtual procedure corresponding to the event that
is to be received dio#ly. event directly calls the overriding procedure, and the event is processed
there. If the overriding procedure does not want to handle the event, then the inherited version of the
procedure is called in the overrider. This accomplishes two things. First, anpwtheders that are
chained to the procedure are executed, so that they may handle the event. Finally, if none of the
overriders wish to handle the event, the chain ends with the default implementation, which then flags
that the event is to be returnedthe caller okvent. In this way, if none of the overriders handle the
event, it is returned as a normal record back tetent caller.

There is no parallel execution implied in such event callbackseWdiet function still must be called
to activatethe event procedures, and all such procedures run in the context of the current process.

The event procedures are prefixed with Aevd (eve
the normaterminal procedures.

The event procedures are a waypteak the rigidormalismof event loop design. In the event loop

model, the event loop must be changed anytime there is new code that needs to handle events. Using
event procedures, new handlers can be added without such modification. This enhancegynodula
since the new code may be in a different modlifes aids theextendibility of the system.

Event procedures are also a way to obfuscate a program by making it less obvious where the flow of
control is in the program. The advantage to the eventriamel is that it creates clear flow of control,
even when handling asynchronous user generated events.

J.11 Timers

Timersallow aterminal program to perform periodic evenisuch as screendsgtes, and keeping
track of time. From 1 to 10 timeseseavailable humberedl..10.Eachtimeris given a time to
measure, in 100 Microsecond counts (6egii Ti me a n dervirastfoe moreidetails). When
the timer is done, #ends an event to the evenieue.

Timers can either simply stop when their time is done, or they can automattaaliiming their
original set time again. This is theecurrent"'mode,andit's useful when an activity needs to be
performedperiodically for the life othe program. For example, updating the screen on an active
program, oicheckingwhen to update a clock display.

Timersaresetby timer. A timer can be stopped or "killed" Willtimer. Killing a timer that is not
active will not generate aarror. This allowsasingleruntimerto be killed withoutiming out during
thecall.

Due to thequeuing nature of theventsystemthereis no guarantee about the accuracy of a timer. It
can arrive latethan its set time. If the prograsnlate getting back to the event queue, diisywith
other events that occur before the timer, receipt of the timer earride very late. All that receiving a
timer event does imdicatethatthetime it measuretias passed.

229

March 6,

2011 THE LANGUAGE PASCALNE

An exampleof timer useis the display of a clock, using teervices time call. If a recurrent timeis
setto go off on every second, the prograhouldnot simply advancehe secondon each timer event.
Instead, the timer evenhould tell the program to read time to detesmnifrthe second has changed,
andwhat value it currently has.

Implementations are free to limit the number of timers. Users should assume no more than 10 timers
are available.

J.12 The Frame Timer

When performing animation, it is common to flip between scrediets with select. The ideal time to
perform a buffer flip is during the retrace time for the display, or the time it takes the display drawing
hardware to reset to the top of the screen, and start drawing from the top again. Hiding the buffer flip
in theretrace time can be key to making animations appear smooth.

The frame timer is a timer much like thandard timers, except thatdtset automatically by the
implementation. It is simply enabled or disabled, and givestfamme event when it times ouOn
hardware that is capable, tarame event is triggered by th@eginning of the retrace cycle.

If an interrupt for the start of the retrace cycle is not available, then the frame timer is simply defaulted
to a reasonable rate of redraw for animatfongxample, 30 times per second.

J.13 Mouse

Themouse gives a position x,y on the screen, as well as from 1 to 4 buttibn& amouse actually
gives its position as relative movements iandy, butthe system converts this to a screen position.
The functon mouse returns the number of mice attachedhe system.

Mice generatéwo eventsFirst, when the mouse moves, it generates positianges via the
etmoumov event. The program does not have to watrgutwhereit is going. Each time the
positionchanges, a new X, y position is posted as\emt.

The second event generated by a mouse is mouse button asserts and daassatis,and
etmoubd. An "assert" means a press of the button, and a "deasdbd"redease of the button. Note
that insteaaf an on/off status check as pollegthe programtheassert and deassert events give
exact notice of when theutton changes state, and what it is changing to.

When there is more than one mouse per systargefault behavior should betreatthemas
separatebut equal controls on the screen from the same W4sgn a mouse moves or changes button
state, it gets control of the program. Tinatchegshecommon use of multiple pointing dees, where
two devices are wrnated by one user. For exam@ldrackball ad a mouse may be just twidferent
input methods from one user.

Alternately,a second moussouldbe a remote mouse over a network. Thlaborative computing”
model allows two users to look at tk@medocumentwith separate micéAdvanced implementations
of multiple mice such as these should be selected by the user.

Mi ce are subject to Arate | imitingo. This means t
mouse can be limited to no more than what the human viewer caivgerThis prevents the number
of mouse events from affecting program performance.

230

March 6,

THE LANGUAGE PASCALNE 2011

J.14 Joysticks

FromO to 4 joysticks may be supported. Eacysjick can have from 0 to 3 "ax" of directions of
travel. In addition, each joystick can have 0 to 4 buttdhsfunctionjoystick returns the number of
joysticks in the systeni.he functionjoyaxis gives the number of axes on a given joystick. The
functionjoybutton gives the number of buttons on a given joystick.

Themessagestjoyba or joystick button assert, amdjoybd or joystick buttordeassert, give events

for the assertion and deassertion of the buttons on a joyétledmany axis on a joystick moves, it
generates atjoymov, or joystickmovement, event. This event gives the relative setting of each axis
of thejoystick.

Unlike a mouse, a joystick is entirely relative. Each axis is representedibigger. If the axis is not
implemented it always reads 0. If thgisis deflectedeft, up or in, depending on the type of axis, then
it is negative. lfit is right, down, or out, it is positivelhe axis is determined in i#gsnountof

deflection. If it is in the middle, it is 0. If it is deflected to the maximum, ib&xint, with the sign
giving the direction.

By convention, the axes on a joystick are:

1. Left/right, or slider.
2. Up/down
3. In/out

Joysticks are "rate limited" devices. This means thahatberhow fastthejoystickis "slewed", it will
only produce an event about every 10 millisecatdeaximum rate. The reason for this is that
humanscannotgenerally perceiveeventdike movement of a pointer across the screen at a faster rate
than thisso there is no point in updating faster than that, and flooding thedueuntqueue.

J.15 Function Keys

Thesystemmay have function keys, which are keys whosefionare determined by the program.
The number of function keys implemented are fowitti funkey. Function key messages are sent by
the messagetfun.

J.16 Aut omati c Ahol do Mode

terminal implements a feature to help with legacy programs designed to thel B8P dscakerial
I/O model. When a program exits that is unaware of the terminal model, the terminal window can
abruptly close. This means that any printout from the program is lost.

The automatic hold mode keeps the window open unleg®an event is received, until the user
specifically closes the window. This mode is enabled by default in systems were it is valeable,
windowing systems.

There are times when the automatic hold mode can be a problem. For example, if a user displayed
menufeaturesa i q u i titévoult pe incarract to hold that window after the user has already
closed the program.

To solve this, thautohold procedure cabe used to set automatic hold mode off or on. With
automatic hold mode off, the window exits immediately when the program does.

231

March 6,

2011 THE LANGUAGE PASCALNE

J.17 Direct Writes

terminal accepts all standard 1ISO 7185 Pascal output methods, writeln, andpage. However,

it can be fasteto output characters to the console directly, bypassing the normal file protocol layers
inherent in the system. The procedwngstr outputs a character string directly to the termimighout

any interpretation of control characters. It cannot be usthdawto on.

J.18 Printers

Terminal can be used to operate a printer using a subset tériménal functionality. To model a
printer,terminal uses a one page buffer that can be written using néemainal commands to
write to this fvwithirttheddffer.sMhenehpay@procedunetisxecuteslitie
contents of the buffer is output to the printer as a whole page, then a new page can be written.

Whenterminal is connected to a printéite, the following conditions are true:

1. There is no inpufile associated with the printer, neither evenvidiual event methods
function.event gives an exception. None of the input devices work, and timer, mouse,
joystick, function keys, the frame timer and theohold set procedure all give exceptions.

2. Theselect call does not function, and gives an exception.

3. Thedimensiongyiven bymaxx andmaxy reflect the size of the printed page.

4. The exact set of attributes will be adglent on the printeblink, of course, is never
available.

A printer device is viewed as accepting a series of pages to be printed. The last page should be
followed by apage procedure call, to insure that a partial page is not left in the page, =iffdar to
the way ISO 7185 Pascal does not allow partiaklinea text fileterminal may automatically add a
page call if that is not the last operation to the printer.

Printer devices are not associated with other, active screen terminal devices. It is up to the program
how to reformat printout to fit the prirdgpage. Specifically, when printing a copy of an onscreen
page, extensive reformatting may be required.

Since printer device mode is a subsetepfminal functionality, it is possible for any program
designed tautput to a printer to have itaitput viewel on a terminal screen. Each page will then be
presented to the user in turn.

Printer devices are determined by the system, which knows which files are associated with printer
devices and which are not. Specifically, tis file which appears as a stamddascaline header file
may be a printeralice, a terminal, or a norméik.

J.19 Metafiles

A terminal metafile operates identically to a printer file except that all output is written to a file, and
not to an external device. The metafile contains not thelystandard characters, eoln, page
commands, but can also represent the other output functioesminal.

A metafile is opened with the proceduneenmeta(f, x, y), where f is the file to open, and x and y
are the number of characters in the x and yagttar griddimensionsA metafile is closed using the
standard Pascalirdose procedure.

232

March 6,

THE LANGUAGE PASCALNE 2011

A metafile has the same restrictions on input, event, select and other functions as fil@iates. It
does not have an input file or any input functions, neelact procedure.

A metafile contains a complete representation of output to feominal. It should be possible to
render a metafile teithera printeror a display either by directly copying the file to a suitable printer,
or by using a conversionilitty.

The format of a metafile is not defin€the only requirement is that all of the output operations,
includingwrite/writeln andpage, areencoded in the file.

J.20 Remote display

terminali s compati ble with the use of firemote displa
fromterminal is encoded and sent over a communications channel. This is done for both input and

output functionality, and thus remote display mode is implerdentinout regtiction of functionality

(unlike printer and metafile mo}ldn order for remote display mode to work, the following conditions

must be true:

1. All output functions must be applied in the order they were issued by the program.
2. Allinput eventsmust be received in the order they were generated by the user.

Any synchronizatiorbetween output and input is up to the program usnpinal, just as it is in
local mode. For example having the user attempt to select a moving target with the mougsewould
highly dependent on the overall display rate of the system.

The exact format of the data passing over the communications channel to allow remote mode to
function is syste dependent.

Terminal is designed to operate efficiently with such remote dispgfaysexample, there is no ability
to read characters from the display.

J.21 Terminal objects

All of the procedures, functions and other declaratioisriminal are alsaavailable in a terminal
objectof the form:

ACK]

March 6,
2011

THE LANGUAGE PASCALNE

module terminal ;

class screen (var input, outp ut: file) ;

var er: evtrec; ! event record

I'E xecutive methods

procedure cursor(x, y: integer); begin end;
function maxx: integer,; begin end;

function maxy: integer; begin end;

procedure home; begin end;

procedure del; begin end;

procedure up; begin end;

procedure down; begin end;

procedure left; begin end;

procedure right; begin end;

procedure blink(e: boolean); begin end;
procedure reverse(e: boolean); begin end;
procedure underline(e: boolean); begin end;
procedure superscript(e: boolean); begin end;
procedure subscript(e: boolean); begin end;
procedure italic(e: boolean); begin end;
procedure bold(e: boolean); begin end;
procedure strikeout(e: boolean); begin end;
procedure standout(e: boolean); begin end;
procedure fcolor(c: color); begin end;
proced ure bcolor(c: color); begin end;
procedure auto(e: boolean); begin end;
procedure curvis(e: boolean); begin end;
procedure scroll(x, y: integer); begin end;
function curx: integer,; begin end;

function cury: integer,; begin end;

function curbnd: boolean; begin end;

procedure select(u, d: integer); begin end;
procedure event; begin end;

procedure timer(i: timhan; t: integer; r: boolean); begin
procedure Kkilltimer(i: timhan); begin end;
function mouse: mounum; begin end;

function mousebutton(m: mouhan): moubut; begin end;
function joystick: joynum; begin end;

function joybutton(j: joyhan): joybtn; begin end;
function joyaxis(j: joyhan): joyaxn; begin end;
procedure settab(t: integer); begin end;
procedure restab(t: integer); begin end;
procedure clrtab; begin end;

function funkey: funky; begin end;

function frametimer(e: boolean); begin end;
procedure autohold(e: boolean); begin end;

234

end;

procedure wrtstr(s: string);

I E vent callbacks

virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure

virtua | procedure

virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual p
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure
virtual procedure

rocedure

evchar(c:

begin

char);

evtim(t: timhan);
evmoumov(m: mouhan);

evmouba(h: mouhan; b: moubut);
evmoubd(h: mouhan; b: moubut);
evjoyba(h: joyhan; b: joybut);
evjoybd(h: joyhan; b: joybut);
evjoymov(h: joyhan; X, y, z: integer);
begin end

begin end
begin end

THE LANGUAGE PASCALNE

end;

evfun(k: funky);

evup; beginend ;
evdown; beginend ;
evleft; beginend ;
evright; beginend ;
ev leftw; beginend ;
evrightw; beginend ;
evhome; beginend ;
evhomes; beginend ;
evhomel; begin end;
evend; beginend ;
evends; beginend ;
evendl; beginend ;
evscrl; beginend ;
eV SCIT; beginend ;
evscru; beginend ;
evscrd; beginend ;
evpagd; beginend ;
evpagu; beginend ;
evtab; beginend ;
eventer; beginend ;
evinsert; beginend ;
evinsertl; begin end
evinsertt; begin end
evdel; beginend ;
evdell; beginend ;
ev delcf; beginend ;
evdelcb; beginend ;
evcopy; beginend ;
evcopyl; beginend ;
evcan; beginend ;
evstop; beginend ;
evcont; beginend ;
ev print; beginend ;
ev printb; beginend ;
ev prints; beginend ;
evmenu; beginend ;

begine nd;

March 6,
2011

beginen d;

235

March 6,

2011 THE LANGUAGE PASCALNE

virtual procedure evterm; beginend ;

begin !terminal
end.

The description of each method is@reen object appears with the same methods as the module
terminal in J.23

When ascreen object isinstantiatedit accepts an input and an output file as parameters. Normally
these are the standdrthut and standardutput fil es of the program. However, thesm be
different files in derived objects.

A screen object contains an event record, so it is not necessary to specify an external event record in
theevent procedurgnor possible)

A screen object can be created as follows:

program p;

joins terminal ;

var si (input, output) . instance of terminal . screen ;
begin

si.home; { send cursor to home position }
writeln(s i .output, 6hel |l o, ter mi nal worl doé) ;
repeat {eventloop}

si.event; { get next event }
{ process events }

until si. ert ype =etterm {loop until program cancelled }
end.

Whereterminal is the terminamodule andsi is thescreen object.screen objects can be
instantiated statically or dynamically.

screen objects contain their own state for the following:

1. Location ofcursor.

2. Current attributes and colors.
3. Buffer working/display status.
4. Tab stops.

5. Timer numbers.

However, eaclscreen object gets the complete state of the modieiteninal when it is created.

236

March 6,

THE LANGUAGE PASCALNE 2011

Having eactscreen object possess its own state means that dajelstacan be writing to its own
section of the screen in its own mode. Each object can everthawn private screen buffer, but
this must be specifically selected using $teéect procedure.

When multiplescreen objects exist, and all have the cursisibility on, the cursor will remain at the
last place it was specifically directed to. This can mean that the cursoapidly appear to swap back
and forth between the active drawisigreen objects. This can be improved by only selecting one of
thescreen objects as having a visible cursdypically, a the cursor should be placed to attract user
attention to where text is being entered, or if none is being entered, it should be turned off.

As in the procedural interface terminal, eventdn thescreen classcan be registered as callbacks
via the virtual procedures. However, just as in the procedural interface, such callbacks do not function
unless theevent method for thescreen object is called.

J.22 Exceptions
The following exceptions are generatedenminal:

|dentifier Meaning |

TooManyFiles The total number of open files possible was
exceeded.
NoJoyStick No joystick access was available.
NoTimer No timer access was available.
ToManyTimers The total number of timers available was
exceeded.
FilenameEmpty Filename specified was empty.
InvalidScreenNumber Screen number specified was invalid.
InvalidHandle An invalid handle was specified.
InvalidTab An invalid tab position was specified.
CannotCreateScreenBuffer Cannot create a buffer fthe screen.
CannotQueryJoystick Could not get information on joystick.
InvalidJoystickHandle Invalid handle specified for joystick.
InvalidTimerHandle Invalid handle specified for timer.
CannotWriteDirect Cannot write direct string witauto on.

terminal establishes a series of exception handlers for each of the above exceptions during startup.
Exceptions not handled by a client progranmtesminal will go back toterminal, then print a
message specific to the error, then the general exceptiomenthrown.

Not all procedures and functions throw all exceptions. See each procedure or function description for a
list of exceptions thrown. A client ®érminal need only capture the exceptions occurring in the
procedure or function that is called.

Beddes the exceptions on terminal procedures, the terminal module also can throw new exceptions on
existing standard call®ead, readIn, write, writeln, page, reset, rewrite, assign, close, length,
location, position, update, append, exists, change anddelete, all of which are overridden by
terminal.

237

March 6,

2011 THE LANGUAGE PASCALNE

J.23 Procedures, functions and methods in terminal

For all of the followingmodulecalls, If the screen fil€is not present, the default is the standard
output file, except forevent, which defaults to the stdardinput file. If the procedure or function is
a method, neither the input nor output screerclliebe specified, since it is inherent in the object.

procedure cursor(Jvar f: text;] x, y: integer);
Set cursor locatiofor output surface filé in x andy.

Exceptions: None

function maxx|[(var f: text)]: integer;
Find maximum screen locationin output surface filé.

Exceptions: None

function maxy(var f: text): integer,;
Find maximum screen locatignin output surface filé.

Exceptions: None

procedure honigvar f: text);
Send cursor to 1,1 location (upper left of scraemutput surface filé.

Exceptions: None

procedure cleafyar f: text];

Clears the screen to the current background color and senmg$beto 1,1 location (upper
left of screenjn output surface filé.

Exceptions: None

238

March 6,

THE LANGUAGE PASCALNE 2011

procedure dé{var f: text);

Backup cursorby one characten output surface filé, and erase character at that location. If
thecursor is at the left side of the screen, and automatic modettsearyrsomill bemoved

up one line, and to the right of screen. If the cursor is abfhef the screen, extreme left,
then the screen will be scrolled down one lena] the cursor moves to the right side of the
screen.

Exceptions: None

procedure ufvar f: text};

Move cursor up one linie output surface filé. If the cursor is already at the top line, and
automationode is on, the screen will be scrolled down, and the cursor remains at the same
position.

Exceptions: None

procedure dowvar f: text)];

Move cursor down one lina output surface filé. If the cursor is already at the bottom line,
and automatic mode is on, the screen will be scrolled up, amdith@remainsatthe same
position.

Exceptions: None

procedure lef(var f: text};

Backup cursorby onecharactein output surface filé. If the cursor is at the left side of the
screen, and automatic mode is on, the cursor will be moved up onenliie theright of
screen. If the cursor is at the top of the screen, left, tleestihen will be scrolled down one
line, and the cursor moves to the right sidéhefscreen.

Exceptions: None

procedure righ{var f: text];

Move forward by one charactir output surface filé. If the cursor is at the right side of the
screenand aitomatic mode is on, the cursor will be moved downlowe andto theleft of
screenlf the cursor is at the bottom of the screen, right, theis¢heen will be scrolled up one
line, and the cursor moves to tleft sideof the screen.

Exceptions: None

239

March 6,

2011 THE LANGUAGE PASCALNE

procedure blinK{var f: text] e: boolean);

If e is true, @ausesall further characters written to the screen to appear in blinkingntext
output surface fild.

Exceptions: None

procedure reversgfar f: text] e: boolean);

If e is true,causes all fether characters written to the screen to appear in reversa taxput
surface filef.

Exceptions: None

procedure underlingfar f: text] e: boolean);

If e is true,causes all further characters written to sheeerto appeatn underlinedextin
output surface filé.

Exceptions: None

procedure superscriptar f: text] e: boolean);

If e is true,causesll furthercharactersvritten to the screen to appear in supersctegtin
output surface filé.

Exceptions: None

procedure subscrigt(ar f: text] e: boolean);

If e is true,causes all further characters written to the screen to appear in subsciipt text
output surface filé.

Exceptions: None

procedure italidivar f: text] e: boolean);

If e is true,causes all further charactessitten to the screen to appear in italic texbutput
surface filef.

Exceptions: None

240

March 6,

THE LANGUAGE PASCALNE 2011

procedure boldyar f: text] e: boolean);

If e is true,causes all further characters written to the screen to appear in bdlu dekput
surface filef.

Exceptbns: None

procedure strikeoywar f: text] e: boolean);

If e is true,causes all further characters written to the screen to appear in strikedut text
output surface filé.

Exceptions: None

procedure standodit@r f: text e: boolean);

If e is true,causes all further characters written to the screen to appear in stendout
output surface filé. Standout is assigned to the first mode possible from the following order:

Reverse.
Underline.
Bold

Italic.
Strikeout.
Blink.

If none of those modes are availaldtggndout is a neop.

Exceptions: None

procedure fcolofgar f: text] c: color);
Sets the foreground, or text color, to the caldm output surface filé.

Exceptions: None

procedure bcolofyar f: text] c: color)
Sets the background, or space color, to the anioroutput surface filé.

Exceptions: None

241

March 6,

2011 THE LANGUAGE PASCALNE

procedure autpyar f: text] e: boolean);
Turns automatic mode on or pffccording ta in output surface filé.

Exceptions: None

procedure curvigyar f: text] e: boolean);
Turns cursor visibility on or offaccording ta in output surface filé.

Exceptions: None

procedure scrollyar f: text] x, y: integer);

Scroll inarbitrarydirections. The screen is scrolled according to the differencearialy.
Uncovered areas on the screen appear in the current backgmond

Exceptions: None

function curX(var f: text): integer;
Find the currenx location of the cursan output surface filé.

Exceptions: None

function cury(var f: text): integer;
Find the curreny location of the cursan output surface filé.

Exceptions: None

function curbnf(var f: text]: boolean;

Checkcursorin boundsReturnstrueif the cursor is currently within thHeounds of the screen
in output surface filé.

Exceptions: None

242

March 6,

THE LANGUAGE PASCALNE 2011

procedure seledtfar f: text u, d: integer);

Select buffer to update and display. Selects the active buffer for updatedisplayd in
output surface filé. The update buffer will receive the result of all writes. The displdier
will be shown on screen.

ExceptionsCannotCreateScreenBuffer

procedure event[([var f: text;] var er: evtrec)];

Get next event. Retrieves the next event from the input duewethe terminal input filé to
event recorekr. If thereis no event readythe program will wait.

Notethatspecificationof the event record is optional only for the termiclassmethod

Exceptions: None

procedure timefyar f: text] i: timhan; t: integer; r: boolean);

Set timer activén output surface filé. The timeri will be set to run for time. If the repeat
flag r is set, then the timer will automatically repeat when the time expires.tifribeis
already in use, then it will cease its current timing, and perfoemew time.

ExceptionsinvalidHandle

procedue killtimer(var f: text] i: timhan);

Stop timerin output surface filé. Stops the timei. If the timer is not active, no error is
reported.

ExceptionsinvalidHandle

function mousKvar f: text]: mounum;
Returnsthe number of mice in output surfaie f.

Exceptions: None

function mousebuttofNar f: text] m: mouhan): moubut;
Returns the number of buttons on a given manse output surface filé.

Exceptions: None

243

March 6,

2011 THE LANGUAGE PASCALNE

function joystick(var f: text}: joynum;
Returns the number of joysticks in thgstemin output surface fild.

Exceptions: None

function joybuttonfvar f: text] j: joyhan): joybtn;
Returns the number of buttons on the given joystinkoutput surface filé.

Exceptions: None

function joyaxis[var f: text] j: joyhan): joyaxn;
Returns the number of axes on the given joygtinkoutput surface fild.

Exceptions: None

procedure settapfar f: text] t: integer);
Set new tab. Sets a new tab locatiohiatoutput surface filé.

ExceptionsinvalidTab

procedure restapfar f: text] t: integer);

Reset tab. Removes the tab at locationoutput surface filé. If there is not a tab set there, it
iS not an error.

ExceptionsinvalidTab

procedure clrtafgvar f: text);
Clear all tabs. All tabs are removed from the tabbingetabbutput surface filé.

Exceptions: None

function funkey(var f: text): funky;
Returns the number of function keys availahleutput surface filé.

Exceptions: None

244

March 6,

THE LANGUAGE PASCALNE 2011

function frametimer([var f: text;] e: boolean);

Enables or disables the framingnér in output surface filé. If e is true, the frame timer is

enabled, otherwise disabled. The frame timer gives frame timer events, which occur
approximately on each refresh of the display screen. It may be tied to the refresh hardware, or
may be simulted via a timer.

ExceptionsNoTimer

procedure autohold([var f: text;] e: boolean);

Sets the state of automatic hatdbutput surface filé. If e is true,autohold is enabled,
othemwise disabledautohold determines if the window will exit immediately if the program
self terminates. If an exit was not ordered via the user interface, the display is held until it is.

Exceptions: None

procedure wrtstr([var f: text;] s: string);

Writes the string directly o the output surface file No control character interpretation is
done.This procedure is used to perform efficient writes to the display surface witheut per
character overhead.

It is an error to call this routine whewito is enabled.

ExceptionsCannotWriteDirect

245

March 6,

2011 THE LANGUAGE PASCALNE

J.24 Events and Callbacks In terminal

For each item, both the event record section and the virtual procedure is presented. See the description
of the eventrecordiOf Advanced I nputo) for the format of the

Event:etchar:(c: char);
virtual procedure evchar(c: char);

Returns a keyboard character

Event:ettim: (timnum: timhan);
virtual procedurevtim(t: timhan);

Indicates the timer according to the timer handias expired.

Event:etmoumov
virtual procedurevmoumov(h mouhanx, y: integey;

The mouse with handke has moved, to the position indicatedxogndy.

Event:etmouba
virtual procedur@vmouba(h: moehan; b: moubut);

The mouse with handle asserted the buttdn

Event:etmoubd
virtual procedur&vmoubd(h: mouhan; b: moubut);

The mouse with handle deasserted the buttdn

Event:etjoyba
virtual procedurevjoyba(h: joyhan; b: joybut);
The joystickwith handleh asserted the buttdn

Event:etjoybd
virtual procedurevjoybd(h: joyhan; b: joybut);
The joystick with handlé asserted the buttdn

246

March 6,

THE LANGUAGE PASCALNE 2011

Event:etjoymov

virtual procedure evjoymov(h: joyhan; x, y, z: integer);
The joystick with handlé moved, and the coordinatesy andz. The values of each axis are
betweeri maxint..maxint. The number oéxisactually present in the given joystick are
given by the functionoyaxis. The value returned by an unimplemented axis is undefined.

Event:etfun
virtual procedurevfun(k: funky);

A function key was sent from the keyboard, witjiving the number of the key.

Event: etup
virtual procedurewup;

The key for move cursor up was sent from the keyboard.

Event: etdown
virtual procedur@vdown;

The ke for move cursor down was sent from the keyboard.

Event: etleft
virtual procedureMeft;

The key for move cursor left was sent from the keyboard.

Event: etright
virtual procedureswright;

The key for move cursor right was sent from the keyboard.

Event etleftw
virtual procedureveftw;

The key for move cursor left word was sent from the keyboard. This indicates the cursor
shoul d be mov e dovérany series of eespce characters. o r

Event: etrightw
virtual procedurewightw;

The keyfor move cursor right word was sent from the keyboard. This indicates the cursor
should be moved right onespatexcharadtdrss or over

247

any

March 6,

2011 THE LANGUAGE PASCALNE

Event: ethome
virtual procedureevhome;

The key for move cursor to the home position in the dwsu (top extreme left) was sent
from the keyboard.

Event: ethomes
virtual procedur@vhomes;

The key for move cursor to the home position in the screen (top extreme left) was sent from
the keyboard.

Event:.ethomel
virtual procedure&vhomel;

The key formove cursor to the home position in the line (extreme left) was sent from the
keyboard.

Event:etend
virtual procedurevend;

The key for move cursor to the end position in the document (bottom extreme right) was sent
from the keyboard.

Event.etends
virtual procedurevends;

The key for move cursor to the end position in the scrieettomextreme right) was sent from
the keyboard.

Event:etendl
virtual procedurevendl;

The key for move cursor to the end position in the line (extreme right) walssarihe
keyboard.

Event:etscrl
virtual procedurevscrl,

The key forscroll screen lefone charactewas sent from the keyboard.

248

March 6,

THE LANGUAGE PASCALNE 2011

Event:etscrr
virtual procedurevscrr;

The key for scroll screen right one character was sent from the keyboard.

Event.etscru
virtual procedurevscru;

The key for scroll screen up one character was sent from the keyboard.

Event:etscrd
virtual proceduresvscrd;

The key for scroll screen down one character was sent from the keyboard.

Event:etpagd
virtual procedurevpagd,;

The key for page down was sent from the keyboard.

Event:etpagu
virtual procedurevpagu;

The key for page up was sent from the keyboard.

Event:ettab
virtual procedurevtab;

The key for enter tab was sent from the keyboard.

Event:etenter
virtual procedureventer;

The key for enter line was sent from the keyboard.

Event:etinsert
virtual proceduresvinsert;

The key for insert block was sent from the keyboard.

249

March 6,

2011 THE LANGUAGE PASCALNE

Event:etinsertl
virtual procedurevinsertl;

The key for insert line was sefnbm the keyboard.

Event:etinsertt
virtual procedurevinsertt;

The key for insert toggle was sent from the keyboard. The action should be to toggle the state
of the insert/overwrite flag used to determine if new typed text overwrites previous text on
saeen, or inserts new text between existing characters.

Event:etdel
virtual procedurevdel;

The key for delete block was sent from the keyboard.

Event:etdell
virtual procedurevdell;

The key for delete line was sent from the keyboard.

Event:etdelcf
virtual procedurewdelcf;

The key for delete character forward was sent from the keyboard. This indicates the character
to the right of the cursor should be deleted.

Event:etdelcb
virtual procedureswdelcb;

The key for delete character backward was 8ent the keyboard. This indicates the
character to the left of the cursor should be deleted.

Event:etcopy

virtual procedurevcopy;
The key for copy block was sent from the keyboard. This indicates the currently selected block
should be copied.

250

March 6,

THE LANGUAGE PASCALNE 2011

Event:etcopyl

virtual procedurevcopyl;
The key for copy line was sent from the keyboard. This indicates the current line should be
copied.

Event:etcan

virtual procedurevcan;
The key for cancel current operation was sent from the keyboard. This indeatgsetation
in progress should be canceled.

Event:etstop

virtual procedurevstop;
The key for stop current operation was sent from the keyboard. This indicates the operation in
progress should be stopped.

Event:etcont
virtual proceduresvcont;

Thekey for continue current operation was sent from the keyboard. This indicates the
operation in progress should be continued if stopped previously.

Event:etprint

virtual proceduresvprint;
The key for print current document was sent from the keyboard.ifidicates the current
document should be printed in entirety.

Event:etprintb

virtual proceduresvprintb;
The key for print current block was sent from the keyboard. This indicates the current selected
bock, if it exists, should be printed.

Event:etpiints

virtual procedurevprints;
The key for print current screen was sent from the keyboard. This indicates the current screen
should be printed.

251

March 6,

2011 THE LANGUAGE PASCALNE

Event:etmenu

virtual procedureevmenu;
The key for display menu was sent from the keyboard. This inditeesenu, if any, should
be displayed.

Event:etterm

virtual procedurevterm;
The key for terminate program was sent from the keyboard. This indicates the program should
be exited.

If this event is received, then the user ordered the exit. This medraitbmatic hold mode, if
enabled, will be bypassed, and the program closed immediately.

VASYA

March 6,

THE LANGUAGE PASCALNE 2011

K Annex K: Graphical Interface Library

The graphical librargraphics extends théerminal model by adding graphical outpotocedures.

Since it is completely upward compatible widrminal, and standard ISO 71&ascabkerialoutput
modes, any program frof8O 7185 Pascabrterminal compliant Pasdae will run under
graphics. In the most advanced modesgofphics, ordinaryPascalvrite statements can still be
used to output text, so all of the outpartmatting proceduresf ISO 7185 Pascatill work.

graphics will handle any graphics task. Besides drawing features, it supports double page animation.
Combined with the sound librasound, full graphical gameare possible.

K.1 Terminal model

graphics emulategerminal by setting up a "character grid" across phel basedscreenEach

"cell" on the grid matches the pixel height and width of a character. The character font is setdo a fix
font by defaulwwhengraphics starts.This gives every character in the font the same height and
width. Finally, thetext drawing mode is set such that both the foreground (the inside afatecters)
andthebackground (the space behind ttaracters) are drawn, overwriting any content of each
character cell as it is written.

This mode can be kept, while drawing other figurethesametext surface Alternately,the cursor
canbe set to any arbitrary pixel on the screen,temtiwritten aywhere, down to the pixel. Also, the
font canbe changedo a proportionalonefor amorepleasing look. Because automatic mode relies on
characters being neatly placed on the grid, it mustitimedoff beforethe cursor leaves the grid or
becomes @roportionalfont.

Whenauto is turned off, the grid is still useful. Although the character spacing varies, the line spacing
is still valid. This means that the grid is no longer useful in the x direction, but it is still useful in the y
direction. In additia, the origin in x is still valid. The result is that a series of lines printed with end
of-lines will do the right thing wittauto off, namely present a series of left justified limkshe x

origin (flush left) with the correct spacing.

K.2 Graphics Coordinates

Thetotal size of the graphics screen is foundrgxxg andmaxyg, which returnthe maximum pixel
index in x and y. The pixel coordinates on the screen areXrbto maxxg(f), maxyg(f). The cursor
can be set to any pixel position byrsorg(f, x, y). The current location of the cursor in pixetms

is foundby curxg andcuryg.

K.3 Character Drawing

Therecan be any number of fonts available on the system, including bothsfreeg fontsand
proportional fonts that vary in the width of characters. fitmaber of fontsn thesystem can be found
with thefont function. Fonts are chosen by logicaimber withfont(f, c), wherec is the font code, 1
tofont. There are two methods determine what font is assigned to a particular font.chale firstis
thestandard font codethe second is the font name syst&tandard fonts are numbers for commonly
usedfontsin the system. These are commonly available fonts the program may need.

Font 1: Terminal Font

PASK]

March 6,

2011 THE LANGUAGE PASCALNE

Thisis the default font set up lgraphics when it starts. It's a fixed font.diso cannot be
superscripted, subscripted, bold or italic, becalnesemodeschange the size of the font.

Font 2: Book Font

This is a serif fontand is good for general purpose textrsas what garagraphn a bak is
written in. This is the most common proportional font.

Font 3: Sign Font

Thisis a no serif fon{sans serif), and is best for headings, titles and sionles as in road
signs and other signk's aproportional font.

Font 4: Technical Font

The echnical font is a fixed font that is guaranteed to be able to scale tolatmgrysize.

This font is used to label drawings and engineering docuntieftsre the technology existed
to create arbitrary fonts in any po#ize,thetechnicalfont was doe with stroked vector
graphics. Now, it is more likely the equivalent to the sign font.

Beyond the standard fonts, the name of an installed font can bebgfiodtnam(f, fc, fns), where
fc is the font code, 1 tfont, andfns returns the descriptiversig for the fontsuch asHelvetica".
The application should use th@ndardontsby default,thenpresenthe system fonts,ybname to the
user, and let the usehoose one adhem.

The size of each character is sefbgtsiz(f, n), where n is théeight of thefontin pixels.The
reason character sizes are set by their height is begmsmtional fonts vary in the width of the
character. The height nevearies.The current height of the font is found blgrsizy. Its width is
found withchrsizx. When a proportional font is activehrsizx returns the width of a space in that
font, which is always as wide or wider than the widest character in that font.

Besides the basic font, extra space can be added between lines (kriteadiag" in typograph, for

the lead strips used between type lines) withspcy(f, n). n is the number of pixels of extra space to
add between line&xtraspacebetweercharacters is added widihrspcx(f, n), where n is the

number of pixel®f extra space to add between retters.

The graphical cursor is placed at the upper left of the chatamtéor the nextcharacteto be drawn.
If it is neededo know exactly where the charactetl rest if drawn on a line. The offset frothe top
of thecharacteboxto the baseline of the text is found with the functiaseline.

In typographyfonts and characters are measured by points, of which the28.8fepoints per

centimeter. Point measurement implies thatetkectsize of objects drawn on the scrégtknown

This can be determined by the functiaimnx anddpmy, which return the "dots per meter" or pixels

in one meter for both and y. The reason it can be two different measures for the two different axes is
that the display may not have square pixels odadpect ratio.

To find a given point size in terms of the dieti needed for theharacterit is found by:
dpmy/2835*point size

The screen aspect ratio can also be found from these calls, it is:

254

March 6,

THE LANGUAGE PASCALNE 2011

dpmx/dpmy

K.4 String Sizes and Kerning

Whenwriting text to thescreen in proportiondbnt, it is often needdto know exactly how much
space the string will take up on the screen, dovthdgpixel. Thisamountof space can change not
only because of the variable width of proportional fonts, but also becauseftdcrtalled "kerning".
Whena stringof characters is draw together, the system can apply "kerning" to charad¢hersiring.
Kerning means to fit the individual letteiegether)ike puzzlepiecesto come up with a tighter
spacing thais normallypossible For exanple, "A" and "V" together as "AV" can typically be kerned
together to takéessspacebecausehey can overlap. To find the exact number of pixels in x that a
string will occupy, the functiostrsiz(f, s) is used, whereis the string. The sizeof the string in y
does not change, and can be found witthsizy. Tofind the exact position, in pixels offset from the
beginning of the string in xaf agiven character, usehrpos(f, s, n), where s is the string, and n is
theindex of the charerto find thex offset of.

K.5 Justification

Justification is the spreading of spacingtigh a string of charactersfiba given spacelf the string
will fit into the spaces foundwith strsiz(f, s), and checking if the resulting pixels required ass|
than orequalto the space they will occupy as justified. The character string is writtgrsiified mode
with writejust(f, s, n), wheres is the string to write, and is the numberof pixels to fit it in. If the
number of pixels allowed for is nehough, the string will be larger than the requested numhber.
offset,in x, of a given justified charactas found withjustpos(f, s, p, n), wheres is the stringp is
the offset of the character you are interested innaisdhetotal number of piels to fit the string in,
as inwritejust.

K.6 Effects

graphics expands the effects terminal. For smaller character baselinesndensed(f, b), is
used For larger character baselinegtended(f, b) is used

In addition to normabold, therearealsolight(f, b), xlight(f, b), andxbold(f, b) effects.For lighter
than normal, extra light, and extra bold modes.

Characters wilhave an embossed look witlmllow(f, b) andraised(f, b). Hollow makeshe
character look sunken, and raised makes it look@miing off thepage.

K.7 Tabs

graphics extends the character level of tabbingagmrminal with procedures that casettabsonan
individual pixel. settabg(f, x) sets a tab at the pixel restabg(f, x) resets the tab at pixel The
terminal procedurecirtab(f) clearsall tabs, including pixel level tabs.

K.8 Colors

Thesimpleeight colors fronterminal are still availablewith the addition ofwo newcalls thatallow
access to the full range of col@sadvancedyraphicsystemprovidesfcolorg(f, r, g, b) sets the
foreground color from values oédr, greeng, and bluéb. Similarly,bcolorg(f, r, g, b) setsthe
backgroundcolor from rgb values. The values of the colors are ratioed. This means that instead of an
absolute number, the possible colors areedtfrom Oto maxint, where 0 is dark, anghaxint is

saturated color. Color ratios allow the true color range implemented by the system to be hidden.

255

