
THE LANGUAGE PASCALINE
March 6,

2011

 1

THE LANGUAGE PASCALINE

REPORT VERSION 0.3

Contents

1 Introduction .. 10

2 Summary of Pascaline extensions to Pascal ... 13

3 EBNF and syntax used in this document .. 19

4 Relationship to ISO 7185 ... 21

4.1 Pascaline as a series of extensions ... 21

4.2 Additional reserved word-symbols .. 21

4.3 Character escapes ... 21

4.4 Compliance with ISO 7185 .. 21

4.5 ISO 7185 level 0 only ... 22

4.6 Extensions to Pascaline .. 22

4.7 Compliance statement .. 22

4.8 Compliance switch ... 22

4.9 Similarities with the ISO 7185 standard document .. 23

5 Relationship to the Pascal-P6 series compiler .. 24

6 Language extensions for Pascaline .. 25

6.1 Word-symbols .. 25

6.2 Special symbols .. 25

6.3 Comments ... 25

6.4 Identifiers ... 25

6.5 Labels ... 26

6.6 Numeric constants .. 27

6.7 Constant expressions .. 28

6.8 Boolean integer operations ... 28

6.9 View and out parameters .. 30

6.10 Extended case statements ... 32

6.11 Variant record case ranges ... 34

March 6,

2011
THE LANGUAGE PASCALINE

2

6.12 Array type shorthand .. 36

6.13 Container arrays ... 36

6.14 Parameterized Variables .. 40

6.15 Extended write/writeln statements ... 42

6.16 Extended read/readln statements .. 46

6.17 Type converters/restrictors ... 58

6.18 Fixed types ... 60

6.19 Extended file procedures and functions ... 61

6.20 Added program header standard bindings ... 72

6.21 Redeclaration of forwarded procedures and functions ... 73

6.22 Anonymous function result .. 73

6.23 Extended Function results .. 75

6.24 Halt procedure .. 76

6.25 Overloading of procedures and functions .. 77

6.26 Operator overloads ... 79

6.27 Static procedures and functions ... 82

6.28 Relaxation of declaration order .. 83

6.29 Exception handling .. 83

6.30 Assert Procedure .. 87

6.31 Extended range types ... 88

6.32 Extended real types .. 90

6.33 Real Limit Determination .. 91

6.34 Character limit determination .. 91

6.35 Matrix mathematics ... 91

6.36 Properties ... 96

6.37 Modularity.. 98

6.37.1 Definition vs. implementation modules ... 102

6.37.2 Overrides .. 103

6.37.3 Parallel modules ... 105

6.37.4 Monitor signaling ... 108

6.38 Channels ... 115

6.39 Classes ... 117

THE LANGUAGE PASCALINE
March 6,

2011

 3

6.39.1 Static objects .. 119

6.39.2 Dynamic objects ... 119

6.39.3 Classes as parameters ... 121

6.39.4 Class parameters ... 121

6.39.5 Inheritance .. 125

6.39.6 Overrides for objects .. 127

6.39.7 Self referencing .. 128

6.39.8 Constructors and destructors .. 132

6.39.9 Operator overloads in classes ... 133

6.39.10 Derivation vs. composition .. 135

6.39.11 Parallel classes .. 136

A Annex A: Collected syntax .. 145

B Annex B: Standard exceptions ... 155

C Annex C: Undefined program parameter binding .. 159

D Annex D: Character sets ... 161

D.1 ISO 8859-1 Character Set Encodings ... 161

D.2 ISO 10646 Character Set Encodings .. 161

D.3 Unicode text file I/O ... 161

D.4 Use of different character sets .. 162

E Annex E: Character escapes ... 163

F Annex F: Overview of standard libraries and modularity .. 169

F.1 Basic Language Support ... 169

F.1.1 services... 169

F.1.2 strings ... 169

F.2 Advanced User I/O and Presentation Management .. 169

F.2.1 Naming... 171

March 6,

2011
THE LANGUAGE PASCALINE

4

F.3 Advanced device libraries .. 172

F.3.1 sound ... 172

F.3.2 network .. 172

F.4 Classes ... 172

F.5 Library procedure and function notation ... 172

G Annex G: System Services Library .. 173

G.1 Filenames and Paths ... 173

G.2 Predefined paths ... 174

G.3 Time and Date .. 174

G.4 Directory Structures ... 176

G.5 File Attributes and Permissions ... 177

G.6 Environment Strings .. 177

G.7 Executing Other Programs ... 178

G.8 Error Return Code .. 179

G.9 Creating or Removing Paths .. 179

G.10 Option Character .. 179

G.11 Path Character .. 179

G.12 Location ... 179

G.13 Internationalization .. 183

G.14 Exceptions .. 185

G.15 Functions and procedures in services ... 187

H Annex H: String Library .. 195

H.1 Conventions ... 195

H.2 Words ... 195

H.3 Format Strings .. 195

H.4 Recycling ... 197

H.5 String container classes .. 197

THE LANGUAGE PASCALINE
March 6,

2011

 5

H.6 Exceptions .. 199

H.7 Procedures and functions in strings .. 200

I Annex I: Extended mathematics library ... 213

I.1 Functions .. 213

I.2 Further trancendentals .. 214

I.3 Hyperbolics .. 214

I.4 Special floating point values .. 215

I.5 NaN functions .. 215

I.6 Utility functions .. 215

I.7 Exceptions in the math library .. 215

I.8 Functions, procedures and constants in the math library ... 216

J Annex J: Terminal Interface Library .. 221

J.1 ISO 7185 Pascal Compatible Mode ... 221

J.2 Basic Cursor Positioning .. 221

J.3 Automatic Mode ... 222

J.4 Tabbing... 222

J.5 Scrolling ... 222

J.6 Colors ... 222

J.7 Attributes .. 223

J.8 Multiple Surface Buffering .. 223

J.9 Advanced Input .. 224

J.10 Event callbacks ... 227

J.11 Timers... 229

J.12 The Frame Timer .. 230

J.13 Mouse ... 230

J.14 Joysticks ... 231

J.15 Function Keys .. 231

March 6,

2011
THE LANGUAGE PASCALINE

6

J.16 Automatic ñholdò Mode ... 231

J.17 Direct Writes .. 232

J.18 Printers ... 232

J.19 Metafiles .. 232

J.20 Remote display... 233

J.21 Terminal objects... 233

J.22 Exceptions .. 237

J.23 Procedures, functions and methods in terminal ... 238

J.24 Events and Callbacks In terminal... 246

K Annex K: Graphical Interface Library ... 253

K.1 Terminal model .. 253

K.2 Graphics Coordinates ... 253

K.3 Character Drawing ... 253

K.4 String Sizes and Kerning ... 255

K.5 Justification .. 255

K.6 Effects .. 255

K.7 Tabs .. 255

K.8 Colors ... 255

K.9 Drawing Modes .. 256

K.10 Drawing Graphics .. 256

K.11 Figures ... 257

K.12 Predefined Pictures .. 257

K.13 Scrolling ... 258

K.14 Clipping ... 258

K.15 Mouse Graphical Position .. 258

K.16 Animation .. 258

K.17 Copy between buffers .. 259

THE LANGUAGE PASCALINE
March 6,

2011

 7

K.18 Printers ... 259

K.19 Metafiles ... 259

K.20 Remote display ... 259

K.21 Declarations .. 259

K.22 Event callbacks ... 262

K.23 Graphical Terminal Objects ... 262

K.24 Exceptions .. 267

K.25 Procedures and functions in graphics ... 269

K.26 Events and Callbacks In graphics ... 280

L Annex L: Windows Management Library.. 281

L.1 Screen Appearance ... 281

L.2 Window Modes .. 281

L.3 Buffered Mode ... 281

L.4 Unbuffered Mode ... 282

L.5 Defacto transparency .. 283

L.6 Delayed Window Display .. 283

L.7 Window Frames ... 283

L.8 Scroll Bars .. 283

L.9 Multiple Windows .. 284

L.10 Parent/Child Windows ... 284

L.11 Moving and Sizing Windows ... 285

L.12 Z Ordering .. 285

L.13 Class Window Handling ... 286

L.14 Parallel Windows ... 286

L.15 Menus ... 287

L.16 Setting Menu Active ... 288

L.17 Setting Menu States .. 288

March 6,

2011
THE LANGUAGE PASCALINE

8

L.18 Standard Menus ... 288

L.19 Menu Sublisting ... 289

L.20 Advanced Windowing ... 290

L.21 Events ... 290

L.22 Event callbacks .. 293

L.23 Window Objects... 293

L.24 Exceptions .. 301

L.25 Procedures and Functions in windows ... 303

L.26 Events and Callbacks In windows ... 310

M Annex M: Widget Library ... 313

M.1 Tiles, Layers and Looks ... 313

M.2 Background colors and placement ... 313

M.3 Sizes ... 314

M.4 Logical Widget Identifiers ... 314

M.5 Killing, Selecting, Enabling and Getting Text to and from Widgets 314

M.6 Resizing and repositioning a widget .. 315

M.7 Types of widgets .. 315

M.8 Z ordering... 315

M.9 Controls .. 315

M.10 Components ... 319

M.11 Dialogs ... 320

M.12 Events ... 322

M.13 Event callbacks .. 325

M.14 Widget Classes ... 326

M.15 exceptions .. 335

M.16 Procedures and functions in widgets .. 336

M.17 Events and Callbacks In widgets ... 356

THE LANGUAGE PASCALINE
March 6,

2011

 9

N Annex N: Sound Library .. 359

N.1 Ports .. 359

N.2 Channels and Instruments .. 361

N.3 Volume ... 367

N.4 Time and the Sequencer ... 367

N.5 Effects... 368

N.6 Pitch Changes ... 369

N.7 Prerecorded MIDI .. 369

N.8 Waveform Files .. 369

N.9 Synthesizer objects ... 370

N.10 Waveform objects .. 371

N.11 Exceptions .. 372

N.12 Functions and Procedures in sound .. 372

O Annex O: Networking Library ... 379

O.1 Exceptions .. 379

O.2 Functions and Procedures in network .. 380

March 6,

2011
THE LANGUAGE PASCALINE

10

1 Introduction

"Standards are great. Everyone should have one of their own" - Anon.

Pascaline is a formal statement of a language that was created over the period 1993 to 2008 in a series

of extensions to ISO 7185 Pascal. The name "Pascaline" was chosen both to show that the language is

designed to be %100 compatible with the original language, and to continue the language Pascalôs

tribute to Blaise Pascal. The Pascaline being Pascalôs calculator, Pascaline the language is "The

machine Pascal built", or the "Machine that runs Pascal".

In 2008, there are several defacto standards for an extended Pascal, and one official one, the ISO

10206 standard. I have been dissatisfied with these existing extensions for the simple reason that

instead of extending Pascal, they are more akin to redesigns of the language. A good definition of what

I mean by redesign would be the introduction of a feature that is designed to replace or duplicate a

construct of original Pascal. In particular, the addition of the ability to coin pointer addresses to any

variable and perform "type escapes" at will remove at a stroke all of the type security Niklaus Wirth

designed into Pascal.

At the same time, I wanted Pascaline to achieve a level of completeness that the language never

achieved in its original form. My goal was not to create an instructional language, but a complete and

practical implementation that could address current problems in computing without further extensions

or special support packages.

To design Pascaline I have enumerated a set of goals for the language design:

¶ To be completely upward and downward compatible with ISO 7185 Pascal.

¶ To be a "logical extension" of original Pascal. That is, to extend Pascal using the same

working theories and means as the original language, and poses no element that does not

interoperate completely with the original language.

¶ To provide a reasonable upgrade to the language capability, that can be implemented using an

existing standard compiler with minor effort compared to the original implementation of the

compiler.

¶ To implement only features that could be implemented efficiently using existing computing

hardware.

Pascaline was designed in a series of steps starting in 1993. For each feature, one or more proposals

were made. Then, the proposals were evaluated, a winner chosen, and a test implementation in the

compiler was made. Then, any adjustments required by the experience of actual use were performed.

Every element in Pascaline is backed by a real implementation that is efficient and tested.

As for most modern languages, the major theme of Pascaline is for extending the language via

libraries, objects and code reuse. Pascaline will, and should, "obsolete itself" by allowing user written

extensions to such a point that the major thrust of development with the language would become that

of developing libraries of functions to cover new areas in computer applications.

This very ability to extend the language also forms the basis of a new problem in standard

implementation that, although it has existed from the time Pascal was originally designed in the 1970s,

has become ever more pressing. That is the definition of standard libraries and platforms. Towards this

end, the Pascaline standard, as in the standard for most of todayôs languages, is divided into the base

THE LANGUAGE PASCALINE
March 6,

2011

 11

standard and a "platform", consisting of a series of libraries that handle common I/O and support

problems in a machine and system independent way.

These libraries appear here as annexes. There is also a series of annexes covering issues such as

character handling, string escapes and other "recommended practices" for Pascaline. The result should

greatly aid the ability to write non-trivial Pascaline programs that are truly portable across machines,

systems and implementations.

The second, but no less important theme in Pascaline, is parallel language execution. Pascaline is a

thoroughly parallel language, and completes the idea that strong type security is a fundamental

building block to parallel language implementation. Indeed, Pascaline now exists as one of the only

languages that offers parallel execution security in a language, instead of being added in as a library

with security left to the user.

As I have offered in the past for Pascal, I extend the offer now, that I will evaluate Pascaline

implementations for conformance to the Pascaline standard, no matter what the purpose of that

implementation, public or private, profit or nonprofit. I only make the conditions that my access to the

implementation be reasonable, that the authors provide me with a list of annexes that are complied

with, and that an option exists in the implementation to enforce strict compliance with Pascaline

regardless of any other extensions that might be present over and above Pascaline. This last is the same

requirement that the ISO 7185 Pascal standard states.

This author further respectfully requests that the name "Pascaline" be applied only to an

implementation that has been found to comply with the language specification here, and by the tests I

provide free of charge or restriction. Further, unlike the ISO 7185 standard, I ask that no exceptions be

allowed for the language (ISO 7185 5.1). A language may well comply with part of this specification,

and be called a Pascal, or some other name. I only ask that it not be called "Pascaline" unless it can

process the full language, aside from the annexes, without exception.

Scott A. Moore

July, 2008

THE LANGUAGE PASCALINE
March 6,

2011

 13

2 Summary of Pascaline extensions to Pascal

Pascal defined a program as a series of nested blocks, one inside the other. The most basic block was

the program block, which could contain any nested series of procedure and function blocks. Each

block can contain a series of declarations containing labels, constants, types, variables, procedures and

functions. Each block contains the code that executes the algorithms contained in the block.

The blocks of Pascal define a closed collection of these declarations with an interface that consists of a

parameter list. In Pascaline terminology, this is a "top" interface, as the block communicates with the

outside of the block via an interface at the "top" of the block:

In Pascaline, each block can also interface, informally, with declarations in the surrounding block. This

is referred to in Pascaline terminology as the "side" interface:

Each block can import declarations from the surrounding block.

Pascal envisioned a program as a tower of blocks resting one atop the other. This paradigm is a good

one, but views the program as a monolithic whole. The provision of fixed types without the ability to

extend them with change also contributes to the model of a program created as a static structure of

code.

Pascaline's main thrust is to add extensibility to Pascal, and this is done by greatly augmenting the

methods to create side blocks. Pascaline views programs as a series of adjoining tiles:

Block

(procedure

or function)

Parameter

List

Block

(Module or

Class)

Constants

Variable declarations

Procedures

é

Surrounding Block

March 6,

2011
THE LANGUAGE PASCALINE

14

In Pascaline, the program block is such an adjoining block, and adds several other block types that

have this ability to export their declarations directly to other blocks. The primary of these is the

module, which has all the powers of a program block, but adds the ability to specify both code that

executes when the program starts, and code that executes when the program ends. In this way, modules

appear as "service blocks" whose point is to provide constants, types, variables, procedures and

functions to the program, along with a method both to set up such items as well as shut them down.

The program and module blocks form a group executing the same thread of execution for a program.

Another module is the process, which defines a new thread of execution aside from the main program.

Process modules cannot directly access program or module blocks, but the two can communicate via a

monitor or channel block, which automatically implements the multitasking primitives needed to

coordinate such an exchange. A share block gives a way to define constants, types, procedures and

functions that are usable by any task without the overhead of multitask coordination.

Pascaline also defines a new level of block that is an intermediate between a so-called "global" block

such as a program, module, monitor, channel, etc. Those blocks are static, with variables that are

allocated for the duration of the program. This is a natural outermost block, since any program

ultimately is rooted in such program constructs. The class block fits between the level of global blocks

and procedure and function blocks. A class block has the ability to share its declarations via the "side",

but also can have its variables created dynamically, or as part of the local variables in a block. Further,

classes have the ability to be extended to any level. Any new class has the ability to be based on a

previously defined class, and to have that class accepted as compatible with the base class.

Because classes define both declarations such as constants and types that have no allocation, as well as

variables that do, the class must be instantiated either as part of the variable data, or via a reference.

Any number of instances of a class may exist associated with such references. The instance of a class

is called an object, and it is the set of the data associated with a class. The class contains the

declaration of the format of the object it creates, and thus it is a "class" or "kind" for all of the objects

created using it.

Because a class defines both a series of constants, types, variables, and also procedures and functions

that can operate on those declarations, which are known as "methods", An object forms an instance of

a module. Classes complete the idea of "object orientation" which dictates that data exists as paired

with the procedures or functions that form its methods, needed to manipulate that data. Because classes

that inherit from each other also have references that are compatible, classes can extend each other to

any number of levels to implement program concepts.

As a dynamic corollary to a module, classes also can have a separate thread of execution as a thread

class, and perform as a tasking communications block as an atom or liaison class.

Block

Constants

Variable declarations

Procedures

é

Block

THE LANGUAGE PASCALINE
March 6,

2011

 15

To allow the static idea of parameter lists in Pascal to be extended, Pascaline implements the

"overload" concept. Procedures, functions and methods can form "groups" under the same name that

are differentiated by kind, type and number such that calls to such procedures and functions are sent to

the instance that has the correct interface to operate on them. Built in expression operators can be

overloaded, thus completing a full circle of data abstraction.

The concept of extendibility is further enhanced by the ability to override existing procedures,

functions and methods. New modules and classes can override the previous meaning of them, and also

extend them by performing new operations and calling the original definitions.

Pascaline has "container" types for arrays that do not specify an exact size. These types can be used to

form a template to create such arrays of a runtime determined size at runtime. This allows procedures

and functions to accept arbitrarily sized arrays to any dimension, and allows such arrays to be

dynamically created as variables and pointer types as well.

The common case of an integer indexed array can be specified by a short form, which also underscores

the idea of container types.

A line comment uses a single character, ñ!ò, that allows the rest of the line to appear as a comment.

Pascaline introduces the break character, "_", for both identifiers and numbers. This aids readability for

long identifiers and numbers.

Goto labels are freed from the restriction that they must appear as numbers, and can assume the same

form as an identifier. Goto labels both retain their status as an interprocedure deep nested branching,

but also allow for intermodular branching via a procedure or function call.

Pascaline implements the method of structured exception handling to handle deep nested returns. This

allows code to be written that delivers exceptions to higher level code without needing knowledge of

the surrounding code. This further enhances extendibility, and allows for complete replacement of

ñgotoòs.

Constant expressions can be used wherever constants were used in Pascal. This makes it possible to

use formulas for these constants instead of precalculated numbers.

Extended radixes allow direct specification of hexadecimal, octal or binary constants.

Boolean operations on integers are permitted, and a new operator, "xor", is implemented for both

boolean and integer operands.

For procedures, functions and methods, two new parameter "modes" are implemented, the view and

out modes. The view mode is identical to value parameter semantics, except that the parameter is

protected from all modification. This makes certain compiler optimizations possible. The out mode is

identical to var mode, but flags to the compiler that the parameter will be used only to pass out results.

Case statements now have an else clause, and ranges of case constants are possible.

Case variant declarations can also use ranges of case constants.

Write/writeln can specify left justified fields, and a special mode allows the output of right padded

strings in their natural length.

March 6,

2011
THE LANGUAGE PASCALINE

16

Read/readln can specify fields on read variables, and can specify literal strings to be matched to the

input. A special mode allows the input of right padded strings in their natural length.

A new declaration exists, fixed, which can be used anywhere a variable can, but cannot be modified.

This allows the compile time specification of fixed tables, and ameliorates the need to create blocks of

assignments at the start of a program.

Pascaline introduces a limited type conversion/restriction operation to convert between scalar types.

This relieves the need to produce special handling to convert enumerated types to integer. It also

introduces the ability to directly specify the precision needed within integer expressions, instead of

always promoting such operations to the full size of integer. This allows more efficient numeric

processing on small word size processors and arbitrary word length processors.

Pascaline standardizes a series of procedures and functions for files, such as binding to external file

names, opening and closing a series of files, indexing within files, finding the length of a file, updating

existing files, and appending to the end of such files, checking the existence of a file, and deleting and

changing the name of a file.

A few new standard header parameters are introduced, including an error output, a list (or print)

output, and a command line or file input.

The strict order of declarations from Pascal is relaxed in Pascaline. label, const, type, var and fixed

declarations can occur in any order. This aids in the modular structure of Pascaline.

When a forwarded procedure, function or method appears as the actual declaration, the parameter list

can be repeated. It is checked for congruence with the original. This allows such declarations to be

created by cut and paste, and is more readable than the original method of having the actual

declarations far from their forwarded declarations.

Procedures and functions can be declared as static, or non-recursive. This allows the creation of more

efficient code on some processors.

Asserts are implemented, allowing the incorporation of runtime checks for code being debugged that

can be removed without modifying the source.

Pascaline allows "subrange" types to be created that are larger than the natural Pascal range of an

integer (-maxint..maxint). This allows an implementation to implement types that utilize double

more precision while taking longer to perform them, so called "extended range" types. It also

implements a set of predefined types that give an implementation defined set of unsigned and signed

extended range types.

Besides standard reals, there is a type that is smaller than the standard real, and a type that is larger

than the standard real. There are new constants that give the maximum values in each real type.

There is a predefined constant for the maximum character value in an implementation.

Matrix mathematics is supported with one dimensional and two dimensional arrays.

A way to specify a function result that obeys the rule of single entry/single exit with the result formed

at the end. This is also required for operator overloads.

THE LANGUAGE PASCALINE
March 6,

2011

 17

Function results are extended to allow most types, including structured, to be returned as a result.

Properties specify a program object that appears as a variable, but has its read and write actions

completely program defined. Properties are also a building block to advanced multitasking structures.

Besides the extensions to the base Pascal language, Pascaline defines a set of optional extension

modules that define the Pascaline "platform". This is a nod to the fact that the set of support calls for

an implementation make as much difference to portability for a program as the base language does.

THE LANGUAGE PASCALINE
March 6,

2011

 19

3 EBNF and syntax used in this document

For the purpose of describing syntax elements of Pascaline, the EBNF or Extended Backus-Naur

Format as used in the ISO 7185 standard is used. The syntax that appears here consists of the syntax

elements from the ISO 7185 standard as modified for Pascaline use.

name = syntax-description .

Describes the syntax expansion of the syntax element by name of "name", which is terminated by '.'.

 a | b

Either construct a or constructor b may appear, but not both.

{ a }

Construct a is repeated 0 or more times.

[a]

Construct a is repeated 0 or 1 times (it is optional).

'abc'

The characters "abc" appear literally.

(a b)

The elements a and b are grouped together.

The syntax expansions that appear in this document mirror the same by name in the ISO 7185

document. If a syntax element by name matches a name used in the document, and is different from

the one contained there, then it represents a Pascaline extension to ISO 7185 Pascal, and replaces the

original syntax definition.

Note the ISO 7185 use of ">" or "alternate" is not used here, because Pascaline does not use the "level

1" extensions of ISO 7185. The syntax for the level 1 extensions was removed.

Annex A contains a full syntax for Pascaline.

THE LANGUAGE PASCALINE
March 6,

2011

 21

4 Relationship to ISO 7185

4.1 Pascaline as a series of extensions

The Pascaline standard accepts the entire language defined in the standard defined in ISO 7185 such

that the set of features defined by Pascaline qualify as extensions under ISO 7185 3.2 ñExtensionò.

4.2 Additional reserved word-symbols

As allowed in ISO 7185 3.2 ñextensionò, the following additional spellings of identifiers are

prohibited because of their use as word-symbols in the Pascaline standard:

forward module uses private external
view fixed process monitor share
class is xor overload override
reference joins static inherited self
virtual try except extends on
result operator start thread atom
property channel liaison out

These word-symbols are all new word-symbols defined by Pascaline. The fact that certain identifiers

are prohibited in Pascal may cause ISO 7185 compliant programs to fail to compile for this reason. To

use a Pascaline implementation for such programs, one of two methods are used:

1. The ISO 7185 compliance switch is enabled (see ISO 7185 5.1 ñProcessorsò note 2).

2. The identifiers in the program that overlap the above list are changed.

4.3 Character escapes

Annex E ñCharacter Escapesò, if implemented by the target system, can affect the behavior of

character strings in an ISO 7185 implementation. Although ISO 7185 does not specify the character set

or contents of strings in a complying program, it is reasonable for a given program to assume that all

visible characters are treated equally.

If the program contains the character ó\ô, the escape sequence introduction character, this will be

treated differently than other characters. To use a Pascaline implementation that implements Annex E

for such programs, one of three methods are used:

1. The ISO 7185 compliance switch is enabled (see ISO 7185 5.1 ñProcessorsò note 2).

2. A switch that enables or disables character escapes is set to disable.

3. All instances of ó\ô within character strings are changed to ó\\ô.

4.4 Compliance with ISO 7185

ISO 7185 5.2 ñProcessorsò allows an implementation to be considered compliant if it is accompanied

by a list of the requirements for which it does not comply. Pascaline specifically does not allow such

exceptions. A processor is Pascaline compliant only if it has the following characteristics:

1. The complete requirements of ISO 7185 are followed, without exception.

2. The complete requirements of Pascaline, in this document, are followed without exception.

March 6,

2011
THE LANGUAGE PASCALINE

22

That is, the ñlist of requirements not complied withò from ISO 7185 5.2 ñprocessorsò is neither

allowed as a starting point for Pascaline, nor carried forward into the language Pascaline.

4.5 ISO 7185 level 0 only

Pascaline is compliant with ñlevel 0ò Pascal only, as allowed for by the ISO 7185 standard (ISO 7185

5 ñComplianceò). Conformant arrays are not specified in Pascaline, nor are they specified as an option

under Pascaline. However, such conformant arrays could well be implemented as an extension to

Pascaline.

4.6 Extensions to Pascaline

Extensions to Pascaline are changes to language features in this standard that do not cause a program

complying with this standard to fail to compile, interpret, run or otherwise function with the exception

that one or more additional spellings of symbols may be reserved to the processor. That is, additional

reserved word-symbols may be defined.

An example of an extension that does not comply with this standard is a modal change such as

redefining the functionality of the ñmodò operator. This would cause otherwise complying programs to

fail to function.

4.7 Compliance statement

Complying processors with Pascaline shall issue the statement:

<This processor> complies with the requirements of Pascaline version X.X [and the annexes A, B,

Cé]

Where:

 <This processor> Is the name of the complying processor

X.X Is the version number of the Pascaline specification complied with.

[and the annexes A, B, C..] Is an optional list of the annexes also compiled with]

There is no minimum requirement for the number of annexes complied with. The processor may

comply with any number from zero to all of them. In some cases, it may be inappropriate for a

particular implementation to have compliance with a particular annex. For example, the graphical

display annex K in conjunction with a system that has no graphical display. Just as compliance with

the basic Pascaline standard implies that a program will or will not run, the presence or absence of an

annex a program relies on may cause it to compile and run, or fail to do so.

4.8 Compliance switch

If the processor complying with this standard contains extensions (defined in 4.6 ñExtensions to

Pascalineò), it shall contain a switch for compliance with Pascaline with the following characteristics:

On:

1. Causes the Pascaline compliance statement to be issued (4.7 ñCompliance statementò).

2. Causes any restriction on spelling of identifiers to be removed (no additional reserved words

beyond those of Pascaline).

THE LANGUAGE PASCALINE
March 6,

2011

 23

3. Causes any extension to the Pascaline standard to be removed.

Off:

1. Causes the Pascaline compliance statement to be removed (4.7 ñCompliance statementò).

2. Enables any extensions to the Pascaline standard.

3. Does not cause any program complying with the Pascaline standard to fail to compile,

interpret, run or otherwise function, with the exception of restriction of spelling of identifiers

(additional reserved words).

Note that if the processor contains extensions that do not comply with the Pascaline definition of

extensions (4.6 ñExtensions to Pascalineò), the processor will, by definition, not comply with the ñOffò

switch requirement above.

4.9 Similarities with the ISO 7185 standard document

In general much of the form and manner of the original ISO 7185 standard document was followed in

this document. However, in one case there is a distinct difference. The original ISO 7185 document

does not distinguish between errors at compile time and at runtime, which sometimes overlap. In this

standard, all runtime errors are represented as exceptions, and a list of exceptions appears as an annex.

The use of ñequivalent codeò occurs many times in this document. That is, a built-in or standard

operation or statement is explained in terms of other statements in ISO 7185 Pascal or Pascaline. This

creates a concrete and exact explanation of standard actions.

March 6,

2011
THE LANGUAGE PASCALINE

24

5 Relationship to the Pascal-P6 series compiler

In 1972 A project was begun to create a portable compiler that accepted and processed a subset of the

original Jensen and Wirth Pascal standard. This compiler went through several versions, and ended as

the Pascal-P4 compiler. In its final iteration, it still a subset compiler, with several features of J&W left

out. This compiler was extensively documented by both the Zurich originators and in ñPascal

Implementation: the P4 Compilerò [S. Pemberton and M.C. Daniels].

In 1982, the ISO 7185 standard was issued, and this was accompanied by the ISO 7185 compiler in A

model Implementation of Standard Pascal [Welsh], and by a BSI (British Standards Institute) test suite

designed to fully test existing compilers.

In 2009 a project was begun to improve the original Zurich Pascal-P compiler to accept and process

the ISO 7185 Pascal standard. This resulted in Pascal-P5, which replaces the model implementation. It

was accompanied by an extensive document and by a new test suite designed to replace the BSI test

suite, which is no longer available.

In 2011 a project was begun to implement the Pascaline language as an increment to the Pascal-P5

compiler, and create a new test suite to verify the result, and also a new working document for the

compiler.

The Pascal-P6 implementation provides a freely available, public domain example implementation of

Pascaline whose test suite is also freely available. This can be used as an example for a new Pascaline

implementation, as a starting point for such an implementation, and/or as a source of tests for such an

implementation, or simply as a reasonable implementation in its own right.

Pascal-P6 and its associated tests provide the proving system for the Pascaline language. It is expected

that when the Pascal-P6 implementation is complete and tested, that this standard will reach a 1.0

version.

THE LANGUAGE PASCALINE
March 6,

2011

 25

6 Language extensions for Pascaline

6.1 Word-symbols

word-symbol = 'and' | 'array' | 'begin' | 'case' | 'const' | 'div' | 'do' | 'downto' | 'else' | 'end' | 'file' | 'for' |

'function' | 'goto' | 'if' | 'in' | 'label' | 'mod' | 'nil' | 'not' | 'of' | 'or' | óxorô | 'packed' |

'procedure' | 'program' | 'record' | 'repeat' | 'set' | 'then' | 'to' | 'type' | 'until' | 'var' | 'while' |

'with' | 'forward' | 'module' | 'uses' | 'private' | 'external' | 'view' | 'fixed' | 'process' |

'monitor' | ' share' | 'class' | 'is' | 'overload' | 'override' | 'reference | 'joins' | 'static' |

'inherited' | 'self' | virtual' | 'try' | 'except' | 'extends' | óonô | óresultô | óoperatorô | óoutô |

ópropertyô | óchannelô | óliaisonô.

Notes:

1. The directives "external" and "forward" in ISO 7185 Pascal are promoted to word-symbols in

Pascaline.

2. The function of the directive ñexternalò in Pascaline is not defined, just as it was not defined in

ISO 7185 Pascal.

6.2 Special symbols

special-symbol = '+' | '-' | '*' | '/' | '=' | '<' | '>' | '[' | ']' | '.' | ',' | ':' | ';' | '^' | '(' | ')' | '<>' | '<=' | '>=' | ':=' | '..' | '(.'

| '.)' | '@' | word-symbol .

Note that the alternative symbols ó(.ô, ó.)ô, and ó@ô were optional in ISO 7185 Pascal, and remain

optional in Pascaline.

6.3 Comments

The character ó!ô introduces a ñLine Commentò. All characters up to and including the next end of line

are ignored. This allows a comment form that is short, and automatically terminated by the end of line:

!

! A simple program

!

program p;

begin

 writeln(óHello, worldô) ! print to console

end .

Notes:

1. The ó!ô character must appear between Pascaline symbols and not within any symbol.

2. Any other comment characters within a line comment are ignored, ó{ó, ó}ô, ó(*ô, or ó*)ô.

6.4 Identifiers

Identifiers in Pascaline are identical to ISO 7185 Pascal, with the addition of the break character '_'. An

identifier can start with any of 'a'..'z' or '_', and continue with 'a'..'z', '_' and '0'..'9'. As in ISO 7185

Pascal, identifiers are not case sensitive.

March 6,

2011
THE LANGUAGE PASCALINE

26

identifier = letter | '_' { letter | digit | '_' }.

Example identifiers:

one_more_time

_last_time

6.5 Labels

Labels, used for goto purposes, can use the same format as identifiers under Pascaline. The original

"apparent value" numeric labels of ISO 7185 Pascal are accepted as well.

label = digit-sequence | identifier .

Example label:

program p;

label exit;

{ declarations }

begin

 goto exit

 { statements to be skipped }

 exit:

end .

THE LANGUAGE PASCALINE
March 6,

2011

 27

6.6 Numeric constants

unsigned-integer = decimal-integer | hex-integer | octal-integer | binary-integer .

decimal-integer = digit-sequence .

hex-integer = '$' hex-digit-sequence .

octal-integer = '&' octal-digit-sequence .

binary-integer = '%' binary-digit-sequence .

digit-sequence = digit { digit } .

hex-digit-sequence = hex-digit { hex-digit }

octal-digit-sequence = octal-digit { octal-digit }

binary-digit-sequence = octal-digit { binary-digit }

digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' '_'.

hex-digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | '_' .

octal-digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '_' .

binary-digit = '0' | '1' | '_' .

Both standard integer and real specifications are available. In addition, three "radix specifier" formats

are available:

$1234 - Specifies hexadecimal format (base 16)

&1234 - Specifies octal format (base 8)

%1010 - Specifies binary format (base 2)

Each alternative format is specified with a "radix introduction" character. These formats can be

specified anywhere the Pascaline construct unsigned-constant is specified.

Pascaline accepts a "break character" within numeric constants. The "_" character can be used

anywhere within a number:

123_456_789

It cannot be used as the first character of a number, which would make it an identifier.

The meaning of the number is considered without the break characters. The number:

1_2_3

is equivalent to:

123

March 6,

2011
THE LANGUAGE PASCALINE

28

Break characters can be used in any radix. They are useful for grouping digits so that the result is more

readable:

12_334_222 { marked in thousands }

$5566_1212 { marked in 16 bit sections }

6.7 Constant expressions

constant = [sign] constant-term { adding-operator constant-term } .

constant-term = constant-factor { multiplying-operator constant-factor } .

constant-factor = '(' constant ')' | 'not' constant-factor | character-string | constant-identifier | unsigned-

integer .

multiplying-operator = '*' | '/' | 'div' | 'mod' | 'and' .

adding-operator = '+' | '-' | 'or' | 'xor' .

Whenever a constant appears in Pascal, Pascaline is able to accept a constant expression. Constant

expression expressions have a syntax that is similar, but not identical to standard expressions in Pascal.

Constant expressions can only operate on other constants or constant expression, and cannot include

variables.

Note:

1. The operator xor is defined in 6.8 ñBoolean integer operationsò.

6.8 Boolean integer operations

expression = simple-expression [relational-operator simple-expression] .

simple-expression = [sign] term { adding-operator term } .

term = factor { multiplying-operator factor } .

factor = variable-access | unsigned-constant | function-designator | type-identifier '(' expression ')' | set-

constructor | '(' expression ')' | 'not' factor .

multiplying-operator = '*' | '/' | 'div' | 'mod' | 'and' .

adding-operator = '+' | '-' | 'or' | 'xor' .

Besides the use of and, or and not on Booleans in Pascal, Pascaline allows the use of and, or and

not with integer operands. The result is the bitwise 'and', óorô or ónotôof the bits in the integer.

Pascaline defines a new operator, xor, which has the same precedence as and. It gives the bitwise

exclusive or of integers. It can also be used on boolean types, but in that case is equivalent to the

operation a <> b.

Boolean operations on negative values are not defined, and may be treated as errors, caught at either

compile time or run time, by the implementation.

THE LANGUAGE PASCALINE
March 6,

2011

 29

The boolean integer or operation is equivalent to:

function bor(a, b: integer): integer;

var i, r, p: integer;

begin

 if (a < 0) or (b < 0) throw(NegativeInteger);

 r := 0; { clear result }

 p := 1; { set 1st power }

 i := maxint; { set maximium positive number }

 while i <> 0 do begin

 if odd(a) or odd(b) then r := r+p; { add in power }

 a := a div 2; { set next bits of operands }

 b := b div 2;

 i := i div 2; { count bits }

 if i > 0 then p := p*2 { find next power }

 end ;

 bor := r { return result }

end ;

The boolean integer and operation is equivalent to:

function band(a, b: integer): integer ;

var i, r, p: integer;

begin

 if (a < 0) or (b < 0) throw(NegativeInteger);

 r := 0; { clear result }

 p := 1; { set 1st power }

 i := maxint; { set maximum positive number }

 while i <> 0 do begin

 if odd(a) and odd(b) then r := r+p; { add in power }

 a := a div 2; { set next bits of operands }

 b := b div 2;

 i := i div 2; { count bits }

 if i > 0 then p := p*2 { find next power }

 end ;

 band := r { return result }

end ;

March 6,

2011
THE LANGUAGE PASCALINE

30

The boolean integer xor operation is equivalent to:

function bxor(a, b: integer): integer;

var i, r, p: integer;

begin

 if (a < 0) or (b < 0) throw(NegativeInteger);

 r := 0; { clear result }

 p := 1; { set 1st power }

 i := maxint; { set maximum positive number }

 while i <> 0 do begin

 if odd(a) <> odd(b) then r := r+p; { add in power }

 a := a div 2; { set next bits of operands }

 b := b div 2;

 i := i div 2; { count bits }

 if i > 0 then p := p*2 { find next power }

 end ;

 bxor := r { return result }

end ;

6.9 View and out parameters

formal-parameter-list = '(' formal-parameter-section { ';' formal-parameter-section } ')' .

formal-parameter-section = value-parameter-specification | variable-parameter-specification | view-

parameter-specification | out-parameter-specification | procedural-

parameter-specification | functional-parameter-specification .

value-parameter-specification = identifier-list ':' type-identifier .

variable-parameter-specification = 'var' identifier-list ':' type-identifier .

view-parameter-specification = 'view' identifier-list ':' type-identifier .

out-parameter-specification = 'out' identifier-list ':' type-identifier .

procedural-parameter-specification = procedure-heading .

functional-parameter-specification = function-heading .

A parameter to a procedure or function has a type and a "mode", that indicates the method of its

passage.

Besides the Pascal parameter modes of var and value, Pascaline adds a mode introduced by view:

THE LANGUAGE PASCALINE
March 6,

2011

 31

program p;

type a = packed array [1..100] of char;

procedure x(view b: a);

begin

 { use, but donôt change, b }

end ;

begin

end .

view parameters have the same characteristics as value parameters, and can be treated identically to

value parameters. A view parameter cannot be modified or "threatened" in the procedure or function it

belongs to. The meaning of "threatened" is the same as for for index variables of ISO 7185 6.8.3.9,

and means that the parameter cannot be assigned, used as an index in a for loop, or passed to another

routine as a var parameter.

view parameters enable the underlying implementation to create more efficient code in many cases. If

the above example was:

program p;

type a = packed array [1..100] of char;

procedure x(b: a);

begin

 { code to use array b }

end ;

begin

end .

The code would have to copy the actual parameter to b, which can be very inefficient for large arrays.

The use of the view parameter allows the system to treat the parameter as a var parameter, but allow

any expression to be passed as a value parameter would.

An out parameter is functionally identical to a var parameter except that it indicates that the

parameter will be used only to return results to the caller, and that the contents of the variable passed

will not be initialized on entry. This allows the processor to check for accesses to the variable before it

has been assigned.

March 6,

2011
THE LANGUAGE PASCALINE

32

program p;

type a = packed array [1..100] of char;

procedure x(out b: a);

begin

 { set new contents for the array }

 for i := 1 to 100 do b[i] := i+10

end ;

begin

end .

6.10 Extended case statements

case-statement = 'case' case-index 'of' case-list-element { ';' case-list-element } [';'] 'end' .

case-list-element = case-list-statement | case-list-default .

case-list-statement = case-constant-list ':' statement .

case-list-default = 'else' statement .

case-constant-list = case-constant-range { ',' case-constant-range } .

case-constant-range = case-constant ['..' case-constant] .

case-index = expression .

A case statement can feature an else clause at the end of all case selects for a given case statement:

THE LANGUAGE PASCALINE
March 6,

2011

 33

program p(output);

var y: integer;

begin

 { code that sets y }

 case y of

 1: write('one');

 2: write('two')

 else write('value unknown')

 end

end .

The statement indicated as else will be executed if the case select value does not match any of the

values in the case list.

A case select value can appear as a range of values:

program x;

var y: integer;

begin

 case x of

 1: write('one');

 2: write('two');

 3..5: write('three to five')

 end

end .

Is equivalent to:

March 6,

2011
THE LANGUAGE PASCALINE

34

program p;

var y: integer;

begin

 { statements that set y }

 case y of

 1: write('one');

 2: write('two');

 3, 4, 5: write('three to five')

 end

end .

6.11 Variant record case ranges

The case constants on a variant record specification can appear as ranges:

record-type = 'record' field-list 'end' .

field-list = [(fixed-part [';' variant-part] | variant-part) [';']] .

variant-part = 'case' variant-selector 'of' variant { ';' variant } .

variant = case-constant-list ':' '(' field-list ')' .

case-constant-list = case-constant-range { ',' case-constant-range } .

case-constant-range = case-constant ['..' case-constant] .

THE LANGUAGE PASCALINE
March 6,

2011

 35

program p;

type sr = 1..5;

var r: record

 i: integer;

 case s: sr of

 1: (q: integer; b: boolean);

 2: (z: real; t: array 10 of integer);

 3..5: (o: set of char; j: integer)

 end ;

begin { program p }

end .

Is equivalent to:

program p;

type sr = 1..5;

var r: record

 i: integer;

 case s: sr of

 1: (q: integer; b: boolean);

 2: (z: real; t: array 10 of integer);

 3, 4, 5: (o: set of char; j: integer)

 end ;

begin { program p }

end .

Notes:

1. For each case range, the starting constant must be less than or equal to the ending constant.

2. The ISO 7185 Pascal requirement that all values of the tagfield be present remains.

March 6,

2011
THE LANGUAGE PASCALINE

36

6.12 Array type shorthand

array-type = 'array' [dimension-specifier] 'of' component-type .

dimension-specifier = index-specifier | range-specifier .

index-specifier = '[' index-type { ',' index-type } ']' .

range-specifier = unsigned-integer { ',' unsigned-integer } .

Pascaline features a special declaration format for the most common case of integer indexed arrays:

ty pe x = packed array 10 of char;

type y = array 20,10 of integer;

are equivalent to:

type x = packed array [1..10] of char;

type y = array [1..20,1..10] of inte ger;

Denoting an array index by size, instead of by an index specification, uses a different syntax, without

the '[' and ']' characters, to make it clear what kind of array specification is being used.

6.13 Container arrays

array-type = 'array' [dimension-specifier] 'of' component-type .

The specification of only fixed arrays in ISO 7185 Pascal caused several practical issues with the

language. Pascaline has the concept of "container arrays", which are array types specified without

index specifications.

type a = array of integer;

Container arrays are a "template type" which cannot be used to directly specify a static variable

without qualification. For example:

{ incorrect example }

program p;

type a = array of integer;

var b: a;

begin

end .

Would not be correct because type a does not contain enough information, namely the size of the

array, to define the static variable b.

The power of container arrays is their ability to be bound to a fully defined static array at a time later

than when the program is compiled. This can happen in three different ways:

THE LANGUAGE PASCALINE
March 6,

2011

 37

1. When a parameter is accepted for a procedure or function.

2. As a result of the creation of an anonymous array in dynamic storage.

3. By use of a parameterized variable declaration (see 6.14 ñParameterized variablesò).

It is important to understand that Pascaline does not specify what are called "dynamic arrays", which is

the ability to resize an array at runtime. Pascaline simply provides the means to create fixed arrays of

any size at runtime and bind to them, or to create generate purpose procedures or functions that can

bind to any size array at runtime. This distinction may seem to be unnecessary, but in practice it

dramatically simplifies implementation of the concept.

Container types can have multiple index levels:

type a = array of array of array of boolean;

Container array types are compatible with other container and fixed array types that:

1. Have the same base types.

2. Have the same packed/unpacked status.

3. Have the same number of index levels.

Thus, the following types are compatible:

type a = packed array [1..100] of char;

and

type b = packed array of char;

type a = array [1..10, 1..100] of integer;

and

type b = array of array of integer;

A container array can be used for a procedure or function parameter:

type string = packed array of char;

procedure x(var s: string);

And can use any mode.

As with ISO 7185 Pascal array parameters, if the parameter is passed by value, there can be

considerable expense associated with copying the array to private location for the procedure or

function.

When container arrays are used as parameters, they are simply serving as holders for an existing array.

In the case of variable parameters, the array was created elsewhere in the code and the parameter

simply points to it. In the case of value parameters, the array is created anew in a private location, and

the existing array copied to it. In both cases, the information needed to complete the template for the

array exists elsewhere.

March 6,

2011
THE LANGUAGE PASCALINE

38

Another way to allocate a container array is to use new to allocate it dynamically:

program p;

type ap = ^a;

 a = packed array of char;

var b: ap;

begin

 new(b, 10);

 b := 'hi there ';

end .

The call of new must specify the size of all indices, in the same order as the indices appear in the

declaration.

Container arrays have the interesting property that they are free of index typing. Container arrays are

considered to be compatible with other arrays (standard or container) that have the same number of

base elements.

This means that the following assignments are possible:

program p;

type a = packed array [20..120] of char;

 b = array of char;

 c = ^b;

var q: a;

 x: c;

begin

 new(x, 100);

 x^ := q;

 q := x ^ ;

end .

It does not matter what the first or last element of the array is. When elements are copied from or to a

compatible container, or when a container is used to reference a standard array, the elements are

matched up from the first to the last without regard to the exact number of the index used. In the last

example, q[20] and x[1] refer to the same element. The equivalent of the above copy operation is:

THE LANGUAGE PASCALINE
March 6,

2011

 39

program p;

type a = packed array [20..120] of char;

 b = array of char;

 c = ^b;

var q: a;

 x: c;

begin

 new(x, 100);

 { x := q; }

 for i := 1 to 100 do x^[i] := q[i+20 - 1];

 { q := x; }

 for i := 1 to 100 do q[i+20 - 1] := x^[i]

end .

When a container array is indexed, the method of specifying its indices is always the integers 1 to n,

where n is last element of the array. The last element of a container array, which happens to also be its

length, can be found by the predefined function:

max(a, l);

Where a is the container array, and l is the indexing level. For example:

program p;

type a = array of array of array of integer;

 b = ^a;

var c: b;

 i: integer;

begin

 new(c, 10, 20, 30);

 i := max(c, 2)

end .

Finds the second level index length of b, which is 20.

Specifying a level for max is optional. The function call:

March 6,

2011
THE LANGUAGE PASCALINE

40

max(a);

is equivalent to:

max(a, 1);

Container arrays make it possible to have a type that represents a string, or packed array of characters

with a starting index of 1:

type string = packed array of char;

This is a standard system definition in Pascaline. In addition, a pointer to a string is also standard:

type pstring = ^string;

6.14 Parameterized Variables

Although containers cannot be directly used as the type of a variable, or part of a variable, they can be

used for the type of a parameterized variable declaration:

variable-declaration = identifier-list [ó(ó expression { ó,ô expression ó)ô] ':' type-denoter .

variable-declaration-part = ['var' variable-declaration ';' { variable-declaration ';' }] .

program p;

type z = array of integer;

procedure q(v: z);

var a(max(v)): array of integer;

 i: integer;

begin

 for i := 1 to max(v) do a[i] := v[i]+1

end ;

begin

end .

Variables which are declared using containers use a parameterized form that takes one or more

expressions on the left side, which are used to fulfill the indices that appear in the type of the variable

on the right side.

The parameter expressions must be integer.

THE LANGUAGE PASCALINE
March 6,

2011

 41

Each expression will be used to match an index in the type. If the type is formed from a nested

declaration, the indices are processed from the outermost declaration to innermost. If multiple

dimension arrays exist, the indices appear from major to minor.

Every index in the type must be matched. If there are more or fewer index expressions that there are

indices in the type, it is an error.

The expression used for an index parameter is not limited. Variables, parameters and functions can be

used, but all of the elements used must be fully defined.

The evaluation of the index parameters is performed before the code in the block for which the

variable is declared is executed. The indices do not vary during the execution of the declaring block.

This means the following variant of the above code would function correctly:

program p;

type z = array of integer;

procedure q(l: integer; v: z);

var a(l): array of integer;

 i: integer;

begin

 l := 5;

 for i := 1 to l do a[i] := v[i]+1

end ;

var r(10): z;

 i: integer;

begin

 for i := 1 to 10 do r[i] := i+10;

 q(10, r)

end .

If a parameterized variable statement contains only constant parameters, the compiler may treat the

variable as equivalent to a fixed type with the same parameters. This allows a container type to be used

as a ñtemplateò type to create static variables:

March 6,

2011
THE LANGUAGE PASCALINE

42

program p;

type z = array of integer;

var a(10): z; ! an array of 10 integers

 b(20): z; ! an array of 20 integers

begin

end .

If the parameterized variable expression contains local variables, it is an error, since such variables are,

by definition, undefined at the start of the block. Note that this does not apply to parameters, which are

initialized externally to the procedure or function that contains the parameterized variable statement.

Parameterized variables allow the specification of fixed types from abstract types. This allows both the

use of types for general classes of types, as well as moving the sizes of arrays out of type descriptions.

6.15 Extended write/writeln statements

Pascaline extends the meaning of field width parameters in ISO 7185 6.9.3.1 to include negative or

zero field widths. The appearance of a negative value as a field width has the same effect as the

absolute value of the field width, except that the resulting character translation is set left justified

within its field. i.e., the spaces that are specified to pad each output format to the field width are output

after the contents of the field, not before.

program p(output);

var i: int eger;

begin

 write(i: - 10)

end .

Would output the integer i in 10 spaces at least, with any padding to the right side of the number.

The behavior of a fielded write for integers is equivalent to:

THE LANGUAGE PASCALINE
March 6,

2011

 43

program p(output) ;

procedure WriteInteger (var f: text; i: integer; f l : integer);

var c: integer;

 p: integer;

begin

 if f l < 0 then begin ! left justified

 ! determine the number of required characters

 c := 0;

 if i < 0 then c := c+1; ! count sign

 p = maxint; ! set maximum power

 ! count digits

 while p > 0 do

 begin if abs(i) >= p then c := c+1; p := p div 10 end ;

 write(f, i:1); ! output minimum format

 if f > c then write(f, ó ó:fl - c) ! complete justification

 end else write(f, i:f l); ! output regular format

end ;

begin

 WriteInteger (output, 20, - 10)

end .

For real values in the floating point format, there is no change for left justified formatting. This occurs

because there are no blanks used to justify such a number. The precision of the fraction is simply

extended to fill the field. Thus:

program p(output);

var r: real;

begin

 write(r: - 20)

end .

Is equivalent to:

March 6,

2011
THE LANGUAGE PASCALINE

44

program p(output);

var r: real;

begin

 write(r:20)

end .

There is no difference between the left justified format for a floating point representation, but there is

also no error.

For a real value output in fixed point format:

program p(output);

var r: real;

begin

 write(r: - 20:5)

end .

The equivalent code is:

THE LANGUAGE PASCALINE
March 6,

2011

 45

program p(output);

procedure WriteRealFixed(var f: text; r: real; f l : integer ;

 fr: integer);

var c: integer;

 p: real ;

begin

 if f l < 0 then begin ! left justified

 ! determine the number of required characters

 c := 2 ; ! minimum field includes ó0.ô

 if r < 0 then c := c+1; ! count sign

 p = 10.0; ! set minimum for extra digits

 ! calculate digits beyond ó0.ô

 while p <= abs(r) do begin c := c+1; p := p*10 end;

 write(f, i:c:fr); ! output minimum format

 if f > c then write(f, ó ó:f- (c+fr)) ! complete justification

 end else write(f, i:f); ! output regular format

end ;

begin

 WriteRealFixed (output, r, - 20, 5)

end .

A zero field parameter has practical use only with string type and character type parameters. This is

because integer and real types have minimum output format sizes. An example of use with strings is:

program p(output);

var i: integer;

begin

 for i := 11 downto 0 do writeln(óhello thereô: i)

end .

March 6,

2011
THE LANGUAGE PASCALINE

46

Hello there

Hello ther

Hello the

Hello th

Hello t

Hello

Hello

Hell

Hel

He

H

(blank)

In the code:

program p(output);

procedure WriteSpaces(s: integer);

begin

 write(ó ó: s)

end ;

begin

 WriteSpaces(10)

end .

Serves to output a given number of spaces, from 0 to N.

6.16 Extended read/readln statements

read/readln statements are symmetrical with their write/writeln counterparts for text files. Variable

parameters can accept field specifications. String variables can be read. Constant string parameters can

appear, to be matched to input.

The net effect of symmetrical read/readln operations is to allow files generated by write/writeln

statements to also be read by read/readln statements.

A standard ISO 7185 Pascal string variable or Pascaline string variable can appear as a read/readln

parameter:

THE LANGUAGE PASCALINE
March 6,

2011

 47

program p(input) ;

var s: packed array 10 of char;

begin

 rea d(s);

end .

The equivalent code is:

program p(input) ;

var s: packed array 10 of char;

procedure ReadString(var f: text; var s: string);

var i: integer;

begin

 for i := 1 to max(s) do read(f , s[i]);

end ;

begin

 ReadString(input , s)

end .

If the end of line is encountered, it is read as a space and the read operation continues. If end of file is

encountered, it is an error.

For fielded read parameters, an integer value field, which can be any expression, appears after the read

parameter:

March 6,

2011
THE LANGUAGE PASCALINE

48

program p;

var f: text;

 i: integer;

begin

 read(f, i:10);

end .

The fielded read requires the input integer to be complete within the specified number of characters,

disregarding any leading or trailing blanks.

The equivalent code to read an integer is:

THE LANGUAGE PASCALINE
March 6,

2011

 49

program p;

var f: text;

 i: integer;

procedure ReadInteger(var f: text; var i: integer; fl: integer);

var s: integer;

function NextChar: char;

begin

 { if past the field, terminate with space }

 if fl = 0 then NextChar := ó ó

 else NextChar := f^

end ;

procedure GetChar;

begin

 get(f);

 fl := fl - 1

end ;

begin

 s := +1; { set sign }

 { skip leading spaces }

 while (NextChar = ó ó) and not eoln(f) do GetChar;

 if not (NextChar in [ó+ô, ó-ó, ó0ô..ô9ô]) then

 throw(InvalidIntegerFormat);

 if NextChar = ó+ô then GetChar

 else if NextChar = ó-ó then begin GetChar(f); s := - 1 end ;

 if not (NextChar in [ó0ô..ô9ô]) then throw (InvalidIntegerFormat);

 i := 0; { clear initial value }

 while (NextChar in [ó0ô..ô9ô]) do begin { parse digit }

 i := i*10+ord(NextChar) -ord(ó0ô); { add in new digit }

 GetChar

 end ;

 { make sure the rest of the field is spaces }

 while fl > 0 do begin

 if NextChar <> ó ó then throw(InvalidIn tegerFormat);

March 6,

2011
THE LANGUAGE PASCALINE

50

 GetChar

 end

end ;

begin

 ReadInteger(f, i, 10)

end .

Reading a character with a field is similar

program p;

var f: text;

 c: char;

begin

 read(f, c :10);

end .

The equivalent code is:

THE LANGUAGE PASCALINE
March 6,

2011

 51

program p;

var f: text;

 c: char;

procedure ReadChar(var f: text; var c: char; fl: integer);

begin

 read(f, c); ! get the character

 ! make sure t he rest of the field is spaces

 while fl > 0 do begin

 if f^ <> ó ó then throw(FieldNotBlank);

 get(f);

 fl := fl - 1

 end

end ;

begin

 ReadChar(f, c, 10)

end .

When reading a string, the default field is equivalent to the number of characters in the string. If a field

is present, and is greater than the number of characters in the string, then the string is expected to

appear with a number of leading blanks. To specify a number of trailing blanks, a negative field is

specified.

In both cases, if the field is smaller than the number of characters in the string, only that number of

characters will be read. There is no initialization implied for characters in the string past the number of

characters in the field.

If the field is 0, the space padded string mode is entered. In this mode, all characters that are present in

the input before any end of line or end of file are read into the string, then the remaining characters in

the string are set to blanks. In this mode it is an error if there are more characters present before the

end of line or end of file than there are available in the string.

March 6,

2011
THE LANGUAGE PASCALINE

52

program p;

var f: text;

 s: packed array [1..20] of char;

begin

 read(f, s:10);

end .

The equivalent code is:

THE LANGUAGE PASCALINE
March 6,

2011

 53

program p;

var f: text;

 s: packed array [1..20] of char;

procedure ReadString(var f: text; var s: string; fl: integer);

var l: integer; { net length of string }

 i: integer;

procedure SkipSpaces(c: integer);

begin

 while c > 0 do begin

 if f^ <> ó ó then throw(FieldNotBlank);

 get(f);

 c := c - 1

 end

end ;

begin

 if fl = 0 then begin { padded mode }

 i := 1; { set start of string }

 while not eoln(f) and not eof(f) do begin

 if i > max(s) do throw(InputExceedsString);

 read(s[i]);

 end ;

 { clear the rest of the string to blanks }

 while i < max(s) do s[i] := ó ó

 end else begin

 l := max(s); { find net length of string }

 if abs(fl) < l then l := fl;

 { skip leading spaces }

 if - fl > max(s) then SkipSpaces(max(s)+fl);

 for i := 1 to l do read(f, s[i]); { get stri ng characters }

 { skip trailing spaces }

 if fl > max(s) then SkipSpaces(max(s) - fl)

 end

March 6,

2011
THE LANGUAGE PASCALINE

54

end ;

begin

 ReadString(f, s, 10)

end .

For real variables, the results are similar to that of integer:

program p;

var f: text;

 r: real;

begin

 read(f, r:10);

end .

The equivalent code is:

THE LANGUAGE PASCALINE
March 6,

2011

 55

program p;

var f: text;

 r: real;

procedure ReadReal(var f: text; var r: real; fl: integer);

var i: integer;

{ find power of ten efficiently }

function pwrten(e: integer): real;

var t: real; { accumulator }

 p: real; { current power }

begin

 p := 1.0e+1; { set 1st power }

 t := 1.0; { initalize result }

 repeat

 if odd(e) then t := t*p; { if bit set, add this power }

 e := e div 2; { index next bit }

 p := sqr(p) { find next power }

 until e = 0;

 pwrten := t

end ;

function NextChar: char;

begin

 { if past the field, terminate with space }

 if fl = 0 then NextChar := ó ó

 else NextChar := f^

end ;

procedure GetChar;

begin

 get(f);

 fl := fl - 1

end ;

March 6,

2011
THE LANGUAGE PASCALINE

56

procedure ReadInteger(var i: integer);

var s: integer;

begin

 s := +1; { set sign }

 if not (NextChar in [ó+ô, ó-ó, ó0ô..ô9ô]) then

 throw(InvalidReal Format);

 if NextChar = ó+ô then GetChar

 else if NextChar = ó-ó then begin GetChar(f); s := - 1 end;

 if not (NextChar in [ó0ô..ô9ô]) then throw(InvalidReal Format);

 i := 0; { clear initial value }

 while (NextChar in [ó0ô..ô9ô]) do begin { parse digit }

 i := i*10+ord(NextChar) -ord(ó0ô); { add in new digit }

 GetChar

 end

end ;

begin { ReadReal }

 { skip leading spaces }

 while (NextChar = ó ó) and (fl > 0) do GetChar;

 ReadInteger(i); { read integer section }

 r := i; { convert integer to real }

 if NextChar in ['.', 'e', 'E'] then begin { it's a real }

 if NextChar = '.' then begin { decimal point }

 GetChar; { skip '.' }

 if not (NextChar in ['0'..'9']) then

 throw(InvalidRealFormat');

 p := 1.0; { initialize power }

 while NextChar in ['0 '..'9'] do begin { parse digits }

 p := p/10.0; { find next scale }

 { add and scale new digit }

 r := r+(p * (ord(NextChar) - ord('0')));

 GetChar { next }

 end

 end ;

 if NextChar in ['e', 'E'] then begin { exponent }

THE LANGUAGE PASCALINE
March 6,

2011

 57

 GetChar; { skip 'e' }

 if not (NextChar in ['0'..'9', '+', ' - ']) then

 throw(InvalidRealFormat);

 ReadInteger(i); { get exponent }

 { find with exponent }

 if i < 0 th en r := r/pwrten(i) else r := r*pwrten(i)

 end

 end ;

 { make sure the rest of the field is spaces }

 while fl > 0 do begin

 if NextChar <> ó ó then throw(InvalidReal Format);

 GetChar

 end

end ;

begin

 ReadReal(f, r, 10)

end .

Constant strings are allowed to appear in the read/readln parameter list:

program p;

var f: text;

 i: integer;

begin

 read(f, óThe answer is: ó, a, ó resulting in: ó, b);

end .

The effect of such a constant is that each character of the input is matched to the characters in the

string, in turn, regardless of if the end of line is true. If the character is matched, it is read and thrown

away. If the character is not matched, it is an error.

The following code shows the equivalent of such a match.

March 6,

2011
THE LANGUAGE PASCALINE

58

program p;

var f: text;

 i: integer;

procedure ReadConstant(var f: text; view s: string);

begin

 for i := 1 to max(s) do

 if f^ <> s[i] then throw(UnmatchedConstantCharacter);

 get(f)

end ;

begin

 ReadConstant (f, óThe answer is: ó)

end .

6.17 Type converters/restrictors

expression = simple-expression [relational-operator simple-expression] .

simple-expression = [sign] term { adding-operator term } .

term = factor { multiplying-operator factor } .

factor = variable-access | unsigned-constant | function-designator | type-identifier '(' expression ')' | set-

constructor | '(' expression ')' | 'not' factor .

multiplying-operator = '*' | '/' | 'div' | 'mod' | 'and' .

adding-operator = '+' | '-' | 'or' | 'xor' .

Pascal defines the function ord to convert any scalar or character type to integer, and defines the

function chr to convert integer to character. Pascaline extends this system to include enumerated types

"type converter":

THE LANGUAGE PASCALINE
March 6,

2011

 59

program p;

type a = (one, two, three);

var x: a;

begin

 x := a(1);

end .

In the example the result of a(1) is the enumerated type constant two. Transfer from an integer to an

enumerated type is the only new type conversion defined in Pascaline.

A similar appearing construct is the ñtype restrictorò:

progra m p;

type a = 20..30;

var y: integer;

begin

 y := a(y+1);

end .

The assignment y := a(y+1) would seem to have no function. However, the compiler can take this as a

hint that instead of promoting the expression y+1 to the full size of an integer, that the operation can be

performed in only the precision required for values within 20..30. This can enable more efficient

processing of expressions on some machines.

When a type restrictor appears, the compiler can generate an error for values in the restricted value that

cannot fit in the range of the target type. Type converters and restrictors never simply discard values.

The value within a type restrictor must be assignment compatible with the type specified in the type

restrictor.

March 6,

2011
THE LANGUAGE PASCALINE

60

6.18 Fixed types

block = { declaration } ['private' declaration] statement-part [';' statement-part] .

declaration = label-declaration-part | constant-definition-part | type-definition-part | variable-

declaration-part |fixed-declaration-part | procedure-declaration ';' | function-declaration ';' .

fixed-declaration-part = ['fixed' fixed-declaration ';' { fixed-declaration ';' }] .

fixed-declaration = identifier-list ':' type-denoter '=' value-constructor.

value-constructor = array-value-constructor | record-value-constructor | constant .

array-value-constructor = 'array' value-constructor { ',' value-constructor } 'end' .

record-value-constructor = 'record' value-constructor { ',' value-constructor } 'end' .

In addition to declaring variables, Pascaline can declare a program construct that appears anywhere a

variable can, but is defined completely at compile time:

program p;

fixed a: integer = 1;

 b: array [1..10] of integer =

 array 5, 6, 8, 2, 3, 5, 9, 1, 12, 85 end ;

 c: record a: integer; b: char end = record 1, 'a' end ;

 d: array [1..5] of packed array [1..5] of char = array

 'tooth',

 'trap ',

 'same ',

 'fall ',

 'radio'

 end ;

begin

end .

The declaration of a fixed is similar to a var declaration, but each variable is given a "value" part that

contains a value constructor. A value constructor is a series of constants or other value constructors

separated by ó,ôs. As in the case of character array constant assignment to character array variables, a

constant string can be used to specify the value of a fixed character array, and must have the same

number of characters as the definition.

Fixed types can be used anywhere a variable type can, but a fixed type cannot be "threatened" in the

sense of the for variable threat of ISO 7185 6.8.3.9.

THE LANGUAGE PASCALINE
March 6,

2011

 61

6.19 Extended file procedures and functions

Pascaline defines several additional functions dealing with files. Files that are not declared as external

via the program header are normally given the property that they are anonymous and may be deleted at

the end of the program. In Pascaline, such files can also be named using the function assign:

program p;

var f: text;

begin

 assign(f, 'myfile');

 reset(f);

 { statements to use file f }

 c lose(f)

end .

assign takes any string (defined in ISO 7185 Pascal as a packed array of characters with a starting

index of 1 and any length). The format of the file name contained in the string is entirely

implementation dependent, but implementations will honor, at minimum, the conventions that:

1. Leading and trailing spaces in the name are ignored, and removed if required.

2. That the characters in the set ['a'..'z', 'A'..'Z', '0'..'9', '_'] are valid in a filename.

3. The filename must begin with characters from the set ['a'..'z', 'A'..'Z','_'].

Notes:

1. These are the same conventions as used for identifiers in Pascaline.

2. This is only a subset of implementation defined filename conventions. The particular Pascaline

implementation may have its own additional requirements for the formatting of filenames that

are a superset of the above conventions.

The Pascaline standard library services has a higher level structuring of filenames that are upward

compatible with the above conventions. See Annex G.

The existence of a named file implies, but does not require, that the file is not deleted at the end of the

program run. It further implies that applying reset to a named file will allow its preexisting contents

to be accessed.

As in ISO 7185 Pascal, applying reset or rewrite to a file causes the file to change from the

"undefined" state to "read" for reset, and "write" for rewrite. It is an error to apply assign to a file

that is not in the undefined state, that is, to rename it while it is active.

A file must be in the undefined state to have assign applied to it. The effect of multiple assign

operations applied to the same file while in the undefined state is itself undefined.

To allow the processing of multiple files by name, the procedure close exists:

March 6,

2011
THE LANGUAGE PASCALINE

62

program p;

var f: text;

 names: array 5 of packed array 10 of char = array

 ómyfile ó,

 óthisfile ó,

 óthatfile ó,

 ónextfile ó,

 ólastfile ó

 end ;

 i: integer;

begin

 for i := 1 to 5 do begin

 assign(f, names[i]);

 { statements that use file f }

 close(f)

 end

end .

close causes bond between the file variable and the named file itself to be broken, and the file state to

be returned back to undefined. In this state, it can have assign applied again. In this way, a sequence

of named files can be processed. close implies that if the file is anonymous, it is deleted, and that the

file returns to being anonymous unless assigned again.

Because in Pascaline, a named file is implied to persist beyond the end of a program, it is also implied

that each file that exists in a read or write state has a close performed on it automatically either when

the program ends, or when the file variable falls out of activation.

ISO 7185 Pascal defines files as a series of elements which can be examined in turn. Pascaline defines

the standard function length to give the number of elements within a file:

THE LANGUAGE PASCALINE
March 6,

2011

 63

program p (output) ;

var f: file of integer;

begin

 assign(f, ómyfileô);

 writeln('The length of the file is: ', length(f));

 close(f)

end .

The function length is equivalent to:

March 6,

2011
THE LANGUAGE PASCALINE

64

program p(output) ;

type fi: file of integer;

var f: fi;

function length(var f: fi) : lcardinal ;

var l , r, p : integer; ;

begin

 l := 0; { clear length }

 r := 0; { clear remainder }

 { find remaining elements }

 while not eof(f) do begin get(f); r := r+1 end ;

 { rewind and count the total elements }

 reset(f);

 while not eof(f) do begin get(f); l := l+1 end ;

 p := l - r; { fin d position from length ï remainder }

 { find original position }

 reset(f);

 while p > 0 do begin get(f); p := p - 1 end ;

 length := l { return length }

end ;

begin

 assign(f, ómyfileô);

 reset(f);

 writeln(óLength of myfile: ó, length(f))

 close(f)

end .

The length function cannot be applied to a file of type text, because the length of line endings is

implementation defined, so the length of a text file is implementation defined as well.

Each element of a Pascal file can be enumerated. In Pascaline, the elements of a file that is not of type

text are numbered from 1 to n, where n is the last element of the file. The current location within the

file is found with the built in function location:

THE LANGUAGE PASCALINE
March 6,

2011

 65

program p(output);

var f: file of integer;

begin

 writeln('The location in the file is: ', location(f));

end .

The function location is equivalent to:

March 6,

2011
THE LANGUAGE PASCALINE

66

program p;

type fi: file of integer;

var f: fi;

function location (var f: fi) : lcardinal ;

var l, r, p , c : integer;

begin

 l := 0; { clear length }

 r := 0; { clear remainder }

 { find remaining elements }

 while not eof(f) do begin get(f); r := r+1 end ;

 { rewind and count the total elements }

 reset(f);

 while not eof(f) do begin get(f); l := l+1 end ;

 p := l - r; { find position from length ï remainder }

 { find original position }

 reset(f);

 c := p; { set count from position }

 while c > 0 do begin get(f); c := c - 1 end ;

 location := p { return location }

end ;

begin

 assign(f, ómyfileô);

 reset(f);

 writeln(óLocation of myfile: ó, location (f))

 close(f)

end .

The current location within a file can be set by the built in procedure position:

THE LANGUAGE PASCALINE
March 6,

2011

 67

program p;

var f: file of integer;

begin

 assign(f, ómyfileô);

 reset(f);

 position(f, 10)

 { statements to use f }

 close(f)

end .

The procedure position is equivalent to:

program p;

type fi: file of integer;

var f: fi;

procedure position (var f: fi ; p: integer);

begin

 reset(f);

 while p > 1 do begin get(f); p := p - 1 end

end ;

begin

 assign(f, ómyfileô);

 reset(f);

 position(f, 10);

 { statements to use f }

 close(f)

end .

position will work with any element from 1 to n+1, where n is the last element of the file. position

allows the location to be set one beyond the length of the file so that the file can be extended at the

end.

March 6,

2011
THE LANGUAGE PASCALINE

68

As with length, there is no way to apply either location or position to a text file.

It is an error to apply position to an undefined file.

In ISO 7185 Pascal, there is no way to update a preexisting file with new data. In Pascaline the

procedure update can be used instead of rewrite:

program p;

var f: file of integer;

begin

 assign(f, 'myfile');

 update(f);

 { statements to use f }

end .

The procedure update for integers is equivalent to:

THE LANGUAGE PASCALINE
March 6,

2011

 69

program p;

type fi: file of integer;

procedure update(var f: fi);

var cpy: fi;

 i: integer;

begin

 ! copy previous contents of file

 reset(f);

 rewrite(cpy);

 while not eof(f) do begin read(f, i); write(cpy, i) end ;

 ! change modes and copy back to original file

 rewrite(f);

 reset(cpy);

 while not eof(cpy) do begin read(cpy , i); write(fi , i) end

end ;

var f: fi ;

begin

 assign(f, 'myfile');

 update(f);

 ! statemen ts to use f

end .

The file that update is applied to must exist.

As for rewrite, update places the file in write mode. However, update does not clear the previous

contents of the file. Update sets the location within the file at 1, just as reset does. If the common

operation of updating a file at the end is wanted, the following code does this:

March 6,

2011
THE LANGUAGE PASCALINE

70

program p;

var f: file of integer;

begin

 assign(f, 'myfile');

 update(f);

 position(f, length(f)+1);

 ! statements to use f

end .

update only works with non-text files. The built in procedure append performs the same action as

above, but works with both text and non-text files:

program p(output);

var f: text;

begin

 assign(f, 'myfile');

 append(f);

 writeln(f, 'hi there');

end .

The procedure append for text files is equivalent to:

THE LANGUAGE PASCALINE
March 6,

2011

 71

program p;

procedure append(var f: text);

var cpy: text;

 c: char;

begin

 ! copy previous contents of file

 reset(f);

 rewrite(cpy);

 while not eof(f) do begin

 if eoln(f) then begin readln(f); writeln(cpy) end

 else begin read(f, c); write(cpy, c) end

 end ;

 ! change modes and copy back to original file

 rewrite(f);

 reset(cpy);

 while not eof(cpy) do begin

 if eoln(cpy) then begin readln(cpy); writeln(f) end

 else begin read(cpy, c); write(f, c) end

 end

end ;

var f: text ;

begin

 assign(f, 'myfile');

 append (f);

 ! statements to use f

end .

The file that append is applied to must exist.

To determine if a file by name exists in the system, the function exists can be used:

March 6,

2011
THE LANGUAGE PASCALINE

72

program p(output);

var f: text;

begin

 if exists(óthisfileô) then

 { operate on óthisfileô }

end .

The exists function takes a variable reference to a Pascaline string, and returns a boolean value that is

true if the file exists.

The exists function can be used to determine beforehand if a reset will yield an error because of a

non-existent file.

To delete a file by name, the delete procedure is used:

program p(output);

begin

 delete('oldfile')

end .

delete accepts a variable reference to a string, and causes the file to be removed from the system. It is

an error if the file does not exist.

To change the name of an existing file, the change procedure is used:

program p(outpu t);

begin

 change('newname', 'oldname')

end .

The file with the name of the second parameter is changed to be the first parameter. Both parameters

are variable references to strings. It is an error if the second parameter does not exist in the system, and

also if the first parameter exists before the change call. It is also an error if any differences exist in

the names besides just their principal names. This rule forbids, for example, the changing of the

location or system parameters of the file using the change call.

6.20 Added program header standard bindings

Besides the ISO 7185 Pascal textfile external bindings of input and output, there are three new

external bindings defined by Pascaline:

THE LANGUAGE PASCALINE
March 6,

2011

 73

error

This file can be used to output error messages or warnings to. It may be aliased to output by

an implementation. The purpose of the error file is to provide a output file that will always go

to the user's console, and cannot be redefined as routed to another display device.

list

This file is used to output for what is assumed to be printout from any attached hard copy

device. The implementation may alias this file to the output file if such a device is not

available, or if hard copy is not desired.

command

The command file is a text line or series of text line that deliver instructions to the running

program. Most commonly, it carries a single line containing the remaining text of the

command line that activated the running program, after the command name itself is discarded.

However, it can contain any instruction line, and can even be directed to be an entire file

containing such commands.

The exact format of the commands and parameters contained in file are implementation

dependent. If the implementation has no concept of a command line, the file can be assigned to

another file, or may appear empty.

Since on many systems a command line exists as a line of text in memory, not as part of a file

system, it is understood that the implementation will simulate the access to such a line as a

file, if that is required.

In the Pascaline specification, implementers are reminded of the requirements of ISO 7185 6.10

"Programs" wherein it is an error if a program parameter is acted on and cannot complete that action.

This clause of ISO 7185 Pascal specifically forbids ignoring the program parameters.

Further, in Pascaline it is strongly suggested that the program parameters which are common text files

be connected, or can be caused to connect, to external files by binding to command file names. (See

Annex C).

6.21 Redeclaration of forwarded procedures and functions

In Pascaline, the parameters of a forwarded procedure or function can be repeated. As in ISO 7185

Pascal, the names of the parameters are the same as the original names in the forwarded header. The

new names, if they happen to be different in the repeated header, are ignored. However, the two

parameter lists are checked for "congruency" using the same rules as procedure and function

parameters in ISO 7185 6.6.3.6 ñParameter list congruityò.

Repeating the parameters in a forwarded procedure or function both increases the self documenting

nature of a program, by keeping the parameters close to the actual body of the procedure or function,

as well as making it easier to create such headers, by simple block copy.

6.22 Anonymous function result

Pascaline has an alternate method to indicate a function result:

March 6,

2011
THE LANGUAGE PASCALINE

74

function-declaration = function-heading ';'directive | function-identification ';' function-block |

function-heading ';' function-block .

function-block = block .

block = { declaration } ['private' { declaration }] statement-part [';' statement-part] .

compound-statement = 'begin' statement-sequence [óresultô expression] 'end' .

At the end of the main block of a function, a result statement can appear:

program p;

fun ction y(a, b: integer): integer;

begin

 result a+b

end ;

The result statement is an alternative to the ISO 7185 arrangement of assigning the result to the name

of a function that is active. It can only be used in a function, and it can only be used at the end of the

function. It can only give the result of the enclosing function (in contrast to ISO 7185 Pascal function

results). It cannot be used in conjunction with a ISO 7185 Pascal assignment to the name of the

function appearing in either the block of the function whose result is to be set, nor any nested block.

Thus, the following example is illegal:

{ illegal example }

program p;

function y(a, b: integer): integer;

procedure q;

begin

 y := 1

end ;

begin

 result a+b

end ;

But this example is legal:

THE LANGUAGE PASCALINE
March 6,

2011

 75

program p;

function y(a, b: integer): integer;

function q: integer;

begin

 y := a+b;

 result 1

end ;

begin

 a := q

end ;

The assignment to the function result y is legal in q, even though q is using the result method, because

the function y is using the ISO 7185 named function result method.

Unnamed function results give a clear way to indicate the function result, that obeys the single

entry/single exit rule with the function result formed at the exit. They are also required in order to

indicate the result of an operator overload function (See 6.26 ñOperator overloadsò).

6.23 Extended Function results

Function results can be any type, including structured:

March 6,

2011
THE LANGUAGE PASCALINE

76

program p;

type a: array 10 of integer;

function y: a;

var z: a;

 i: integer;

begin

 for i = 1 to 10 do z[i] := i+10;

 y := a

end ;

begin

end .

Such extended function results imply greater costs due to the need to copy the structure back to the

caller.

A function result cannot be a file, nor a structure having any part that is a file..

Function results can be container arrays, but must be compatible with the result.

The ISO 7185 rule that function results must be assignment compatible with the function result type

remains.

6.24 Halt procedure

A standard Pascaline procedure halt exists:

program p;

begin

 if not exists(ómyfileô) begin

 writeln(óneeded file does not existô);

 halt

 end

end .

The halt procedure causes the program, and all of its threads, to immediately terminate. It is

equivalent to throwing the unspecified global exception.

The equivalent code for a program block is:

THE LANGUAGE PASCALINE
March 6,

2011

 77

program p;

label 99;

begin

 if not exists(ómyfileô) begin

 writeln(óneeded file does not existô);

 goto 99

 end ;

 99:

end .

The halt procedure will terminate the enclosing program no matter which module it appears in.

6.25 Overloading of procedures and functions

procedure-heading = attribute 'procedure' identifier [formal-parameter-list].

function-heading = attribute 'function' identifier [formal-parameter-list] ':' result-type.

attribute = 'overload' | 'static' | 'virtual' | 'override' | óoperatorô .

The attribute overload can be used to specify that one procedure or function forms an overload group

with another:

March 6,

2011
THE LANGUAGE PASCALINE

78

program p;

procedure x(y: integer);

begin

 { statemen ts to operate on parameter y }

end ;

overload procedure x(c: char);

begin

 { statements to operate on parameter c }

end ;

Any number of procedures or functions with the same name can be joined this way into an overload

group. When the procedure or function is called, the compiler determines which of the procedures or

functions in the overload group is to be used to satisfy the call. Thus, both of these calls are possible

with the definitions above:

x(1);

x('c');

The compiler considers three things when determining which procedure or function of an overload

group is meant:

1. If the called context is a procedure or function call.

2. The number of parameters.

3. The type compatibility of the parameters.

Overload groups are not allowed to be ambiguous. There is no "preference" or "priority" involved with

overloads. If two overloads are ambiguous with respect to each other, then an error will result at the

time of the definition of the conflicting overload.

Two calls are ambiguous with each other if they match for procedure/function status, have the same

number of parameters, and the parameters are compatible between lists, using the ISO 7185 definition

of compatibility according to 6.4.6 ñAssignment-compatibilityò (where either parameter could be

assignment compatible with the other), and also if one parameter is char while the other is a single

character string. This means, for example, that having one parameter of type real, and the other of

type integer, means those parameters are ambiguous with each other.

When parameter lists are compared, the mode of the parameter, or its var, view or value status is

ignored.

It is an error if two parameter lists "converge" with different modes. Two parameter lists are said to

converge at any point in the list if that parameter and all parameters to the left of it are found to be

compatible using the rules above. An example of an overload declaration that is invalid by this rule is:

THE LANGUAGE PASCALINE
March 6,

2011

 79

! invalid program

program p;

procedure a(i: integer; c: char; b: boolean);

begin

 { statements of first overload of a }

end ;

overload procedure a(i: integer; var c: char; b: boolean; r: real);

begin

 { statements of second overload of a }

end ;

begin

end .

Even though the two parameter lists would be distinct because they differ in number, the lists are

convergent at parameter c, and parameter c has conflicting modes, the first being value, and the

second being var.

The purpose of the convergence rule is to relieve compilers from having to store all the parameters in a

procedure or function call before determining which routine of an overload group matches the call.

Overload groups must be completed within the same declaration block. Different modules, classes,

procedures and functions cannot add to each otherôs overload groups.

6.26 Operator overloads

operator-declaration = operator-identifier operator-heading ó[ó:ô result-type] .

operator-heading = óoperator' formal-identifier [formal-parameter-list] .

operator-identifier = ónotô | ó+ô | ó-ó | ó*ô | ó/ô | ódivô | ómodô | óandô | óorô | ó< ó | ó>ô | ó=ô | ó<=ô | ó>=ô |

óinô | óisô | ó:=ô .

Besides overloading procedures and functions, it is also possible to overload expression operators:

March 6,

2011
THE LANGUAGE PASCALINE

80

program p;

type string = packed array of integer;

 pstring = ^string ;

operator +(a , b: string): pstring ;

begin

 { code to concatenate strings a and b }

end ;

operator := (a, b: string) ;

begin

 { code to assign string b to a }

end ;

begin

end .

Where ñ+ò and ñ:=òare the operators to overload. The following operator overloads are possible:

THE LANGUAGE PASCALINE
March 6,

2011

 81

Program p;

type x: record i , r : integer end;

operator +(a : x): x ; begin result a end ;

operator ï(a : x): x ; begin result a end ;

operator not (a : x): x ; begin result a end ;

operator +(a, b: x): x ; begin result a end ;

operator - (a, b: x): x ; begin result a end ;

operator *(a, b: x): x ; begin result a end ;

operator /(a, b: x): x ; begin result a end ;

operator div (a, b: x): x ; begin result a end ;

operator mod(a, b: x): x ; begin result a end ;

operator and (a, b: x): x ; begin result a end ;

operator or (a, b: x): x ; begin result a end ;

operator xor (a, b: x): x; begin result a end ;

operator <(a, b: x): x ; begin result a end ;

operator >(a, b: x): x ; begin result a end ;

operator =(a, b: x): x ; begin result a end ;

operator <=(a, b: x): x ; begin result a end ;

operator >=(a, b: x): x ; begin result a end ;

operator in (a, b: x): x ; begin result a end ;

operator is (a, b: x): x ; begin result a end ;

operator :=(out a: x; b: x): x ; begin end ;

begin

end .

The ó-ó and ó+ô operators can be both unary and binary, and they have different priorities. The exact

type of operator is indicated by the number of parameters that appear. There is only one operator

procedure, which is assignment (ó:=ô).

The parameters to an operator function can be any type, but cannot be var parameters.

The parameters to the operator procedure ó:=ô can be any type, but the first parameter must use out
mode.

The results of an operator function cannot be established via a ISO 7185 by name function result

assignment. Instead, the unnamed result form is used (see 6.22 ñAnonymous function resultò).

The existence of an operator overload does not change the priority of the operator.

Operator overloads follow the same rules as standard overloads. Specifically, operator overloads

cannot be ambiguous with either each other, or the parameters of standard , built in operators.

The types of built in operators with the exception of is appears in ISO 7185 6.7.2 ñOperatorsò.

The existence of an operator overload will not cause the built-in operator to be altered in any way. An

operator overload simply adds behavior where the built-in operator would indicate a type error.

March 6,

2011
THE LANGUAGE PASCALINE

82

Note that since the system definition for is is defined for any object, it is not possible to overload the

is operator for objects.

The use of an operator overload function to introduce so-called ñside effectsò will result in ambiguity

as to when the side effect occurs, since Pascaline does not specify expression evaluation order.

6.27 Static procedures and functions

procedure-heading = attribute 'procedure' identifier [formal-parameter-list].

function-heading = attribute 'function' identifier [formal-parameter-list] ':' result-type.

attribute = 'overload' | 'static' | 'virtual' | 'override' | óoperatorô .

Pascaline defines a static attribute that is used before any function or procedure to indicate that it is

used statically.

program p;

static procedure z;

var x, y: integer;

begin

 { statements of z }

end ;

static function y;

begin

 { statements of y }

end ;

begin

end .

The static word-symbol is used to indicate to the compiler that the procedure or function with that

attribute will not recursively call itself, nor be called by any subprocedure or subfunction.

On some processors with limited addressing resources, using static can result in smaller and faster

executable programs, sometimes dramatically so. Compilers targeting more advanced processors

typically ignore the static word-symbol.

In the case where the procedure or function is contained entirely within a module, and is not visible

outside the module (it is within the private section), the compiler can automatically determine the

static status of a procedure or function. However, if it is visible outside the module, the compiler must

THE LANGUAGE PASCALINE
March 6,

2011

 83

assume it may be recursively called. In this case, the static attribute is required to obtain the improved

code.

Note:

1. The compiler may also detect that a static attributed procedure or function calls itself, either

directly or indirectly via another procedure or function, and issue an error.

6.28 Relaxation of declaration order

block = { declaration } statement-part .

declaration = label-declaration-part | constant-definition-part | type-definition-part | variable-

declaration-part | fixed-declaration-part | procedure-declaration ';' | function-declaration ';'

.

The declaration order in ISO 7185 Pascal of labels, constants, types, variables, then procedures and

functions is relaxed. These constructs can appear in any order. However, the rule remains that each

identifier must be declared before its use, with the normal ISO 7185 Pascal exception for pointer

declarations.

Pointer forward references must resolve within the same var declaration.

Relaxing declaration order in Pascaline is a more natural match for modular compilation.

6.29 Exception handling

try-statement = 'try' (statement-sequence) try-end .

try-end = (except-series | except-unconditional) ['else' statement] .

except-series = except-specifier { except-specifier } [except-unconditional] .

except-unconditional = óexceptô statement .

except-specifier = óonô exception-identifier { ó,ô exception-identifier } óexceptô statement .

block = { declaration } ['private' { declaration }] statement-part [';' statement-part] .

statement-part = compound-statement .

compound-statement = 'begin' [try-end] statement-sequence [óresultô expression] 'end' .

The most common use for interprocedure gotos is to handle error returns easily from deep nested

procedures. Pascaline provides an alternative structure. The try statement executes one or more

statements with an "exception guard":

March 6,

2011
THE LANGUAGE PASCALINE

84

program p;

var myexception: exception;

begin

 try

 { ... }

 throw(myexception)

 { ... }

 on myexception except { statement to execute on myexception }

 except { statement to be executed on any exception }

 else { statement to be executed if no exception occurs }

end .

If anywhere within the guarded execution the statement:

throw (myexception) ;

or

throw;

is executed, any active procedures or nested statements are removed, and execution resumes with the

statement after either the exception clause that matches the given exception, or the general exception

statement. If no exception occurs, execution continues either with the else statement, if specified, or

the next statement after the try statement.

The program:

THE LANGUAGE PASCALINE
March 6,

2011

 85

program p(output) ;

var myexception: exception;

begin

 try

 { ... }

 throw(myexception)

 { ... }

 on myexception except writeln(óThe operation failedô)

 else writeln(óThe operation succeededô)

end .

Is equivalent to:

program p(output) ;

label 1;

var myexception: boolean;

begin

 myexception := false;

 begin

 { ... }

 myexception := true; goto 1;

 { ... }

 end ;

 1:

 if myexception writeln(óThe operation failedô)

 else writeln(óThe operation succeededô)

end .

The try statement may carry a specific list of exceptions, followed by an optional unconditional

exception, or simply an unconditional exception. An unconditional exception matches any exception.

A specific exception only matches the named exception.

When an unspecified exception is thrown, the result is as if an exception was thrown that does not

appear anywhere in the program. It is the ñmasterò exception handler that always exists in any

program.

March 6,

2011
THE LANGUAGE PASCALINE

86

try statements may nest. The result of executing throw is to return to the innermost try statement

currently executing. If a goto is used to branch outside of the try statement, then it will be effectively

removed from activation, and any throw statements will go to the next outer try statement.

If an exception is thrown, and either there is no try statement active, or no try statement matches the

exception indicated, then the result is an error. The result of unhandled exceptions is as if a try

statement exists outside of the program that catches any exceptions that are not handled within it, and

handles the exception by termination.

Exceptions are represented by a special variable defined at the system level called the exception

type:

module throwit;

var myexception: exception;

procedure fault;

begin

 throw (myexception)

end ;

begin { throwit }

end . { throwit }

In order to throw an exception, both the thrower and the catcher must be able to see the same exception

variable. The exception to this rule is the unspecified exception, which is available program wide.

An exception is a predefined type. If an exception is passed as a parameter, it must be passed with

var mode.

The exception handler itself can throw another exception, including an unspecified one. However,

exceptions do not stack, nor is there any state, such as handled or unhandled, associated with

exceptions.

Note:

Exceptions do not cross thread or process boundaries. A thrown exception will only return to

the same thread, and only to an active outer block of that thread.

A special version of the try statement exists for module constructor sections (see 6.37 ñModularityò).

It is common for modules, which only execute when the program starts up and shuts down, to register

handlers for all of the exceptions that are thrown in that module. The reason is to allow the program

and other nested modules to handle the exceptions, but ultimately handle the exception in the

originating module.

THE LANGUAGE PASCALINE
March 6,

2011

 87

module m(output) ;

var FaultException: exception;

procedure doit;

begin

 throw (FaultException)

end ;

begin { constructor }

end ; { constructor }

begin { destructor }

 on FaultException except writeln(ó*** module fault occurredô)

end . { destructor }

The constructor for the module behaves as if it performed a try statement at the end of the constructor.

The destructor then finishes the try statement. Note that the on construct must appear immediately

after the begin for the destructor block.

The primary purpose of a constructor/destructor exception handler is to handle exceptions defined

within the module. It is possible to handle exceptions created by other modules, but it is an error to

throw an exception to an exception variable whose module is not active.

Note that when an unhandled exception occurs in a separate process, that causes the entire program to

terminate.

Being a variable, an exception cannot be shared across process, monitor and channel barriers. This

means that monitor exceptions are self-contained and go back to the monitor itself. General exceptions

go back to the process, monitor or channel that contains them. An unhandled exception always

terminates the program, no matter what thread the exception occurs on.

6.30 Assert Procedure

The assert procedure generates a runtime error if its expression is not true:

assert - statement = 'assert' '(' ex pression [ó,ô character - string] ')'

The expression can be any expression with a boolean result type. If the expression evaluates at runtime

as false, then the program faults, otherwise it continues to run.

If a string constant is present after the exception boolean expression, it will serve to ñannotateò the

assert. Typically it contains the reason for the exception. It may be printed as part of any error

message. Alternatively, it may have no effect.

The program:

March 6,

2011
THE LANGUAGE PASCALINE

88

program p(output);

var pi: ^integer;

begin

 pi := nil;

 assert(p <> nil, óThe pointer was nilô)

end .

Is equivalent to:

program p(output);

label 99;

var pi: ^integer;

begin

 pi := nil;

 if p = nil begin

 writeln(óThe pointer was nilô);

 goto 99

 end ;

 {... }

 99:

end .

The assert procedure enables placing a large number of consistency checks within a program being

developed that can be automatically removed from the code by a compiler option.

In addition, an implementation can provide extended debugging information when the assert occurs,

such as program location, registers, etc.

6.31 Extended range types

ISO 7185 Pascal defines the results of integer expressions to lie within the range -maxint..maxint.
The size of an integer is by definition chosen to be the size that is most efficient and natural on the

target machine. Just as Pascaline defines operations to restrict results to numbers smaller than integer,

it defines the ability to find results larger than a standard integer. If larger than integer variables and

operations are specified, it is assumed that some penalty in terms of time, space or both will be added.

THE LANGUAGE PASCALINE
March 6,

2011

 89

To specify an extended range value, a subrange is specified outside of the range -maxint..maxint.
For example:

var li: 0..maxint*2;

Pascaline does not define the maximum length of such extended range types.

When an extended range value appears in an expression, the range of the result will have a range

according to the following rules:

1. If either type is signed, the result is a signed type.

2. If either type is extended range, the result is an extended range type.

Operations with extended types are not guaranteed to be able to hold all the values of both operands.

The implementation is only required to maintain at least the range of values in integer.

In addition, the programmer can specify the exact length of result at any point in the evaluation of an

expression using range specifications. The only way to achieve an exact range of values throughout a

calculation is to specify it.

Pascaline predefines three new types of integer.

cardinal

Cardinal types represent the positive integers only. The range of cardinal is:

0..maxcrd;

Where maxcrd is a predefined constant. maxcrd is the maximum unsigned value of a machine word

on the target machine. It could also be equal to maxint on an implementation that does support

extended cardinal types.

linteger

Long integer types represent an extended, signed integer type, defined as:

- maxlint..maxlint;

Where maxlint is a predefined constant. maxlint is typically the maximum value of a "double length"

result on the target machine, that is, a value formed using two machine words. It can also be equal to

maxint on an implementation that does not support extended linteger types.

lcardinal

Long cardinal types represent the positive integers only. The range of lcardinal is defined as:

0..maxlcrd;

March 6,

2011
THE LANGUAGE PASCALINE

90

Where maxlcrd is a predefined constant. maxlcrd is the maximum unsigned value of a "double

length" result on the target machine, that is, a value formed using two machine words. It can also be

equal to maxint on an implementation that does not support extended lcardinal types.

The interactions of binary operators on all integer based types is as follows:

TYPE A TYPE B RESULT TYPE

integer integer integer

cardinal cardinal cardinal

linteger linteger linteger

lcardinal lcardinal lcardinal

integer cardinal integer

linteger lcardinal linteger

linteger cardinal linteger

integer lcardinal linteger

linteger integer linteger

lcardinal cardinal lcardinal

Unary operators simply deliver the same type as the operand.

Note:

The lack of defined maximum for integer representation in Pascaline can be interpreted to

implement so called ñN-length integersò, which can be any length up to the size of memory in

the implemented machine. This is the analog of arbitrary length sets in ISO 7185 Pascal.

6.32 Extended real types

Pascaline defines two new real types, sreal and lreal:

program p;

var sr: sreal;

 lr: lreal;

begin

end .

Unlike integers, Pascaline cannot set ranges for real types. Also unlike integers, there is no ñnaturalò

size of a real for most machines, as in the native type that is inherent to the word size of the machine.

sreal defines a real type that smaller and has less precision than a ISO 7185 real. lreal defines a real
type that is larger and has greater precision than a standard ISO 7185 real. An sreal has a precision

that is less than or equal to real, and lreal has a precision that is greater than or equal to real. In

practice, sreals can be equivalent to reals, and lreals can be equalent to reals.

The use of an sreal implies that the programmer wishes to save space, and perhaps execution time

over the use of an ISO 7185 Pascal real, in exchange for less precision and total range. The use of an

THE LANGUAGE PASCALINE
March 6,

2011

 91

lreal implies that the programmer wishes to obtain more precision and total range than an ISO 7185

Pascal real, in exchange for using more space and perhaps longer execution time. The word ñperhapsò
is used here because it is common to simply extend all real types to the same length on some machines

and process them identically.

All real types are compatible with each other, and behave as reals in all contexts. In equations, reals

are always ñvalue conservingò. The result of mixing two different types of reals is the larger of the

two.

The result of using different real types in combination is:

Type A Type B Result type

real real real

sreal sreal sreal

lreal lreal lreal

sreal real real

lreal real lreal

Sreal lreal lreal

6.33 Real Limit Determination

Several new system defined constants are defined to express the limits of real numbers:

Type Low Limit High Limit

real -maxreal maxreal

sreal -maxsreal maxsreal

lreal -maxlreal maxlreal

6.34 Character limit determination

Pascaline provides a constant for character set implementation limits:

maxchr

This character constant defines the maximum value of a character in the range:

chr(0)..maxchr ;

maxchr is of type char.

6.35 Matrix mathematics

One dimensional arrays of integers or reals and two dimensional arrays of integers or reals can

participate in expression operations:

March 6,

2011
THE LANGUAGE PASCALINE

92

Operator Function

+a matrix affirmation

- a Matrix negation

a+b matrix Addition

a- b matrix Subtraction

a*b matrix Multiplication

program p;

type ai: array 10 of integer;

var ai1, ai2: ai;

begin

 ai1 := ai1+ai2;

 ai1 := ai1+1

end .

Is equivalent to:

program p;

type ai: array 10 of integer;

var ai1, ai2: ai;

 i: integer;

begin

 for i := 1 to 10 do ai1[i] := ai1[i]+ai2[i];

 for i := 1 to 10 do ai1[i] := ai1[i]+1

end .

For a matrix case:

THE LANGUAGE PASCALINE
March 6,

2011

 93

program p;

type ai: array 10, 10 of integer;

var ai1, ai2: ai;

begin

 ai1 := ai1+ai2;

 ai1 := ai1+1

end .

Is equivalent to:

program p;

type ai: array 10 of integer;

var ai1, ai2: ai;

 x, y: integer;

begin

 for x := 1 to 10

 for y := 1 to 10 do ai1[x, y] := ai1[x, y]+ai2[x, y];

 for x := 1 to 10

 for y := 1 to 10 do ai1[x, y] : = 1 ;

end .

Any single dimension array of integers or reals with an integer starting index of 1 qualifies as a vector.

Any two dimensional array of integers or reals with both integer starting indexes of 1 and equal major

and minor dimensions qualifies as a matrix. The allowable operands are:

Operator Operands

a+b a or b may be matrix, integer or

real.

a- b a or b may be matrix, integer or

real.

a*b a or b may be matrix, integer or

real.

For two vector or matrix operands to be compatible with each other, they must be of the same type, or

aliases of that type. The result is the same type as the operands.

One of the operands of +, -, or * can be an integer or real when the other side is a vector or a matrix.

The result of this is a vector or matrix with the given operation performed on each element of the

March 6,

2011
THE LANGUAGE PASCALINE

94

matrix using the single real or integer. However, a single real cannot be used with a integer matrix, as

this would imply conversion of real to integer.

program p;

type ai: array 10 of integer;

var ai1: ai;

begin

 ai1 := ai1*2

end .

Is equivalent to:

program p;

type ai: array 10 of integer;

var ai1: ai;

 i: integer;

begin

 for i := 1 to 10 do ai1 [i] := ai1[i]* 2

end .

And

program p;

type ai: array 10, 10 of integer;

var ai1: ai;

begin

 ai1 := ai1*2

end .

Is equivalent to:

THE LANGUAGE PASCALINE
March 6,

2011

 95

program p;

type ai: array 10, 10 of integer;

var ai1: ai;

 x, y: integer;

begin

 for x := 1 to 10

 for y := 1 to 10 do ai1 [x, y] := ai1[x, y]* 2

end .

Vectors or matrices can also be assigned as a whole:

program p;

type ai: array 10 of integer;

var ai1: ai;

begin

 ai1 := 1

end .

Is equivalent to:

program p;

type ai: array 10 of integer;

var ai1: ai;

 i: integer;

begin

 for i := 1 to 10 do ai1 [i] := 1

end .

And

March 6,

2011
THE LANGUAGE PASCALINE

96

program p;

type ai: array 10, 10 of integer;

var ai1: ai;

begin

 ai1 := 1

end .

Is equivalent to:

program p;

type ai: array 10, 10 of integer;

var ai1: ai;

 x, y: integer;

begin

 for x := 1 to 10

 for y := 1 to 10 do ai1 [x, y] := 1

end .

Such a vector or matrix assignment causes the expression to be assigned to each of the elements of the

vector or matrix. The assignment compatibility rules are the same as non-vector or matrix assignment.

If individual elements of the vector or matrix are assignment compatible with the expression, then the

entire vector or matrix is also assignment compatible.

Vector or matrix expression operators do not perform a function that could not be added to Pascaline

as a library function. Their primary reason for being here is that such operations can often be translated

to efficient operations directly in the target hardware.

6.36 Properties

property-identifier = qualified-identifier .

property-declaration = attribute property-identifier ó:ô type-denoter ó;ô read-block ó;ô write-block ó;ô

read-block = block .

write-block = block .

A property is declared object that appears as a variable, but has the reading and writing of its contents

completely defined by the program that contains it:

THE LANGUAGE PASCALINE
March 6,

2011

 97

program p;

var sum: integer;

property myval: integer;

begin { read definition }

 myval := sum

end ;

begin { write definition }

 sum := sum+myval

end ;

begin

 sum := 0;

 myval := 10;

 myval := 5;

 writeln(ómyval is ó, myval)

end .

The property declaration is followed by two blocks, the first being the read definition block, and the

second being the write definition block. During the read and write definition blocks, the identifier that

is the same as the property carries the value that is written or read, and acts as an ordinary variable

within the definition block that can be read or written. Outside of the property definition, the identifier

is defined by the actions in the read and write definition.

At the end of the read definition, the content of the property identifier variable is used to satisfy the

read request.

At the start of the write definition, the content of the property identifier variable is set from the write

request.

Thus in the example, two write requests are made to myval which sums them starting with zero, and

the final read request returns the resulting sum, 15.

Properties are a step beyond operator overloading, which can define the calculation of values for entire

classes of variables with a given type. Properties can set the exact behavior of individual objects, even

if they all have the same type.

March 6,

2011
THE LANGUAGE PASCALINE

98

Notes:

1. The property can be any type, including structured types, with the exception that it cannot be a

file or be a structure containing a file, because a file cannot be the target of an assignment.

2. Each of the read and write blocks of a property can have its own declaration section. The

declaration for each of the read or write blocks applies only to that block.

3. Properties can be forwarded just as procedures and functions can.

6.37 Modularity

module = module-heading ';' module-block '.' .

module-heading = module-type identifier ['(' module-parameter-list ')'] .

module-type = 'program' | 'module' | 'process' | 'monitor' | óchannelô | 'share' .

module-block = uses-declaration-part { module-declaration } ['private' { module-declaration }]

statement-part [';' statement-part] .

module-declaration = declaration | class-declaration .

uses-declaration-part = [link-specification module-name { ',' module-name }] .

link-specification = 'uses' | 'joins' .

module-name = identifier .

ISO 7185 Pascal expresses programs as a series of nested blocks, from programs to procedures and

functions. Unfortunately, this model tends to require compilation as a single unit.

Pascaline defines a series of modules which have the same status and level as a program block, but

exist in separate files. The basic module appears as:

module x(input, output);

uses mymodule;

var x: integer;

private

var y: integer;

begin

end .

A module appears very much like a program block. It exists in a separate file. It can have header

parameters. It has a main block. It also has an "ending" block. Unlike the program block, Modules are

not typically designed to execute for the duration of the program, but rather to run at some time before

the program block. A module initializes its variables, then passes control on either to other modules, or

the program block. If the module has a termination block, this will be executed sometime after the

THE LANGUAGE PASCALINE
March 6,

2011

 99

program block completes. This allows the module to perform clean up on termination, such as closing

files, etc.

Modules allow a collection of resources to be created, such as labels, constants, types, variables, fixed,

procedures, and functions. These are collected as a unit to serve the program. A program block can be

thought of as a special case of a module that has no termination block.

The bonding of modules and programs into an executable unit, as well as the order in which the startup

blocks and termination blocks are executed is implementation defined.

The use of a module by another module or program is specified by the uses or joins declaration:

uses mod1,mod2;

or

joins mod1,mod2;

The uses and joins specifiers must precede any other declaration within a program or module. There

can be only one uses and one join specifier per program or module.

Both a uses and a joins specification cause the declarations contained within the specified module to

be imported to the outer block declarations of the importing module or program. This importation is

logically done as if the source file itself were actually read. However, the equivalent of this action may

be performed instead by reading a preprocessed equivalent of the target program or module.

A uses or joins specification only imports that specific module. If the imported module itself imports

further modules, which it may require to complete its declarations, any such import must occur without

exposing that secondary module to the original importing module. This is a so-called "incidental

import", and necessary. Such imports will be completed such that their declarations are available to the

requesting module, but not the original importing module. This can create the situation that the

importing module receives declarations of which it cannot access the component declarations within. If

the importing module must access such components, it must specify the containing module in a uses

or joins specification. This prevents "zipper effect", where a importing module gets an unintended

series of submodules included.

Imported and importing modules can contain loops or mutually referring modules. However, the ISO

7185 Pascal rule remains that an identifier must be defined before its use, with the exception of

pointers. Further, pointer declarations must complete within the same module. Import loops can create

non-obvious definition problems:

March 6,

2011
THE LANGUAGE PASCALINE

100

module x;

uses y;

type q = integer;

begin

end .

module y;

uses x;

type r = q;

begin

end .

Will result in an undefined declaration error because module x has not completed the declaration of q

at the time module y is processed.

Note that module x and y are in different files. Only one module may appear in a file.

Note that implementations may optionally flag module loops as errors.

All of the declarations of a module can be exported, including constants, types, variables, fixed,

procedures, functions and classes with one exception. goto labels cannot be exported, and a goto

statement cannot target a module other than its own.

However, it is simple to ñbridgeò a goto into a given module:

THE LANGUAGE PASCALINE
March 6,

2011

 101

module m;

label quit;

procedure abort;

begin

 goto quit

end ;

begin

 { ... }

 quit:

end .

The reason this is required is because the procedure abort was compiled at the same time as the goto

target quit. The information required to adjust program parameters such as the stack are available at

that time.

Imports obey the rule that no module is read twice. This prevents the continuous processing of

modules.

The appearance of a uses specification causes the identifiers within the imported module to be

merged without qualification to the importing module or programs name space. The identifiers can be

directly used, and an error will be flagged if there is a duplicate name between importing and imported

modules.

The appearance of a joins specification causes the identifiers to be made available in "qualified" form.

A qualification appears as follows:

qualified-identifier = module-name { ó.ô identifier }

For example:

mod1.alpha

Qualification prevents the collision of name spaces and is the preferred method of importing modules.

Notes:

March 6,

2011
THE LANGUAGE PASCALINE

102

1. Without a uses or joins specification, modules and programs will not conflict even if there

are one or more names that are identical between them.

2. Because of the circular nature of imports, it is possible to refer to the components of a module

before it has executed its start block. This is an error that may or may not be caught at runtime.

3. It is an error to call a procedure or function that is not active. This is an error that may or may

not be caught at runtime.

Pascaline provides a way to create declarations in a module that are not visible by importing modules

or programs with the private specification:

module x;

type alpha = array 10 of char;

private

var x: alpha;

begin

end .

The private word-symbol can appear anywhere between declarations. It indicates that all further

declarations in in a module cannot be exported. The appearance of the private word-symbol

essentially divides the outer declarations of a module into a "public" section that appears first, and a

private section that follows. The declarations for a module can thus be set up as a set of public

declarations that define the external interface for the module, and a set of private declarations that

perform the work of defining the functionality of the module.

The public and private areas cannot be mixed or changed in order. Specifically, it is not possible to

create a public definition that is built with private declarations in Pascaline (so called "opaque" types).

However, the converse is possible, private declarations based on public declarations.

Procedures and functions can be forwarded across from the public area to the private area. Thus, it is

possible to create procedures and functions that use private declarations such as variables and other

procedures and functions.

Pascaline does not enforce the structure of intermodule links, nor is this within the power of a

language. However, the most reliable structure for modules is a tree with the program module at the

top, and successive layers of service and support routines below that. This kind of structure necessarily

excludes loops, the allowance of which was required to enable intermodule gotos to process

exceptions. The modern means to do that is with exceptions.

6.37.1 Definition vs. implementation modules

Pascaline does not define a special definition as opposed to an implementation module. An

implementation module, a module containing all of the source code required to define the contents of

the module, also serves as its definition module.

If it is required to construct a module containing just the definitions within a module, and not the

implementation source, the common method used is to "strip" the module to arrive at a defacto

THE LANGUAGE PASCALINE
March 6,

2011

 103

definition module. Stripping means to remove all definitions that are private, and to remove the

contents of any public procedure or function. This will give a module that can be used to define the

interface to the module for other modules, but cannot be used to build the module. It is typically used

in conjunction with modules that have already been completely processed to object code in the target

processor.

Such definition modules can be manually or automatically constructed by the implementation.

Definition modules can be verified by compilation with sufficient options to ignore unreferenced

definitions, and lack of function result assignments.

Definition modules can also be used to represent modules written in another language, or even

assembly language. It is this facility, defined entirely by the Pascaline processor, that takes the place of

the external directive defined in ISO 7185 Pascal.

6.37.2 Overrides

procedure-heading = attribute 'procedure' identifier [formal-parameter-list].

function-heading = attribute 'function' identifier [formal-parameter-list] ':' result-type.

property-declaration = attribute property-identifier ó:ô type-denoter ó;ô read-block ó;ô write-block ó;ô

attribute = 'overload' | 'static' | 'virtual' | 'override' | óoperatorô .

Overrides give the ability for new modules to add to or replace the functionality of older modules. This

may give, for example, the ability for a new module that implements graphical operations on a printer

the ability to add to an existing graphical module that implements such operations on a user terminal.

A function or procedure can be specified as capable of being overridden by higher level modules (or

even the same module). In order to be overridable, the procedure or function must specify that

capability using the virtual word-symbol:

module m;

virtual procedure x;

begin

end ;

begin

end .

When specifying a procedure, function or property as virtual, the user should realize that there is a

small cost in program run time, program space, or both to handle the requirements of a virtual

procedure, function or property.

To override the procedure, function or property, the word-symbol override is used:

module m;

March 6,

2011
THE LANGUAGE PASCALINE

104

override procedure x;

begin

end ;

begin

end .

In many cases, a procedure, function or property that overrides another will extend or change it by

handling the new features of the procedure, function or property itself, but then send the unchanged

part of the service back to the overridden procedure or function. This can be done via the inherited

word-symbol:

module m;

override procedure x(q: integer);

begin

 if q = 1 then inherited x(q) else { p erform here }

end ;

begin

end .

The inherited word-symbol specifies that the following procedure, function or property call is to be

sent back to the original overridden version.

If multiple overrides of a function, procedure or property exist, they will nest. The procedure, function

or property that is actually performed is the last procedure or function overridden. The function or

procedure that is performed when inherited is specified is the function or procedure that was current at

the time of the override.

Only one override for the same procedure, function or property can exist in a module. The inherited

version of a procedure, function or property can only be called from the module that overrides it.

The order in which overrides are executed is the same as the order of module or object initializations.

Override procedures, functions and properties can only exist at the outer block of a module. They may

not be nested.

The overridden virtual procedure, function or property must be external.

The virtual procedure or function and its overrider must be congruous.

No overloads can exist to a virtual or override procedure or function.

THE LANGUAGE PASCALINE
March 6,

2011

 105

A virtual procedure, function or property need not contain useful code. A typical design paradigm is to

use a declaration with no useful implementation to define an ñabstractò module whose functionality

will be defined by further overrider modules:

program graphics;

var notimplemented: exception;

virtual procedure setpixel(x, y: integer);

begin

 t hrow(notimplemented)

end ;

virtual procedure line(x, y: integer);

begin

 t hrow(notimplemented)

end ;

begin

end .

Only a monitor can override other monitors. Share modules cannot contain overrides.

6.37.3 Parallel modules

A module in Pascaline forms the basic structure of a program. The program block itself is actually a

special instance of a module which has no ending block. Together, program modules and common

modules form a group that runs the main task of the program.

The process module appears just as a program module. It has only a starting code block, and no

ending code block. It can accept header parameters. The difference between a process and a program is

that the process defines a new task within the program that runs in parallel with the main task, or any

other process blocks.

March 6,

2011
THE LANGUAGE PASCALINE

106

process mythread(input, output);

uses mymonitor;

var x, y;

procedure q;

begin

end ;

begin

 while true do writeln(óI am another threadô)

end .

A process can run "forever", in which case it simply terminates when the main task terminates, or it

can run for a time and then stop. A process stops when it exits from its startup block.

A process can have a uses statement, but it cannot use just any module. To do so would be to conflict

with the main task run by the program module. No other module can use a process module. A process

can use its own globals or routines, and can use a monitor.

A monitor module appears just as normal, program callable module:

THE LANGUAGE PASCALINE
March 6,

2011

 107

monitor m(output);

procedure locked; forwa rd ;

private

var x, y;

procedure locked;

begin

 x := 1

end ;

begin

 { startup statements }

end;

begin

 { shutdown statements }

end .

The monitor module is a multitask "hard" module. Each of its publicly callable procedures, functions

and properties have a special locking function that is executed on entry to the routine, and unlocked on

exit. The net effect is that only one task running under Pascaline is allowed within a monitor at one

time. This prevents the data corruption that would otherwise occur in a multitasking system.

Monitors have other special requirements that prevent data corruption. A monitor cannot have global

variable definitions. All global variables must be defined within the private section. Procedures and

functions can be defined in the global section, which means that they are multitask locked procedures

and functions, but to accomplish useful work, they must typically be forwarded into the private

section.

Finally, monitors cannot use var or call by reference for any call to another, external procedure or

function. This is to protect the locking of a monitor. Monitors can have a public procedure or function

with var parameters. This means that a monitor routine can access the variables of its calling task, but

cannot export such references, nor export the monitors own data in a var passed variable.

Monitors can use other monitors, atoms, channels and liaisons, but cannot use a process, program

or module. However there is a final module form that can be used by any other module, all of

process, program, module and monitor, known as a share module:

March 6,

2011
THE LANGUAGE PASCALINE

108

share mylibrary(output);

procedure x;

begin

end ;

begin

end .

share modules cannot have any global variables at all. Because of this, it also has no startup or

shutdown code blocks. There is nothing in a share to set up or to shut down.

The advantage to a share is that it can contain a series of support routines that can be accessed by any

caller. A share acts as a monitor without any global data, but does not have the locking overhead of a

monitor.

6.37.4 Monitor signaling

Monitors serve as more than just a library of procedures and functions callable by any task. Because a

module has state in the form of globals, it can serve as a communications method between tasks. In

Pascaline, the monitor is how multiple tasks coordinate their actions.

Given just the definition of monitors above, it would be possible for tasks to communicate by using

status routines to flag conditions between them. However, each task would have to poll, or continually

call a monitor function to find out that status. This wastes computer time that multitasking is supposed

to use efficiently.

Instead, Pascaline defines a special variable called a semaphore, and a few special routines that can

be used with them, the signal, signalone, and wait procedures.

THE LANGUAGE PASCALINE
March 6,

2011

 109

monitor queue;

type byte = 0..255; { data type for queue }

procedure inqueue(b: byte); forward ;

procedure outqueue(var b: byte); forward ;

private

const maxque = 100; { maximum leng th of queue }

type queinx = 1..maxque; { pointers for queue }

var fifo: array [queinx] of byte; { fifo for queue }

 inptr: queinx; { in pointer }

 outptr: queinx; { out pointer }

 notempty: semaphore; { not empty signal }

 notf ull: semaphore; { not full signal }

{ queue pointer iterator }

function next(i: queinx): queinx;

begin

 if i = maxque then i := 1 { queue has wrapped }

 else i := i+1; { next location }

 next := i { return result }

end ;

{ test queue is full }

function empty: boolean;

begin

 empty := inptr = outptr { pointers are equal }

end ;

{ test queue is empty }

function full: boolean;

begin

 full := next(inptr) = outptr { next input location is out

March 6,

2011
THE LANGUAGE PASCALINE

110

 location }

end ;

{ place byte in queue }

procedure inqueue(b: byte);

begin

 { if full, wait until a byte clears }

 while full do wait(notfull);

 { place input byte }

 fifo[inptr] := b;

 { set next input location }

 inptr := next(inptr);

 { signal queue is now not empty }

 signal(notempty)

end ;

{ get byte from queue }

procedure outqueue(var b: byte);

begin

 { if empty, wait until a byte is available }

 while empty do wait(notempty);

 { get output byte }

 b := fifo[outptr];

 { set next output location }

 outptr := next(outptr);

 { signal queue is now not full }

 signal(notfull)

end ;

begin { constructor }

 { set input = output, and queue is empty }

 inptr = 1;

 outptr = 1

THE LANGUAGE PASCALINE
March 6,

2011

 111

end .

The wait procedure acts just as a loop to poll if the condition represented by the semaphore has

occurred, but it is implemented efficiently under Pascaline. Typically, the calling task is put to sleep

until the signal occurs, then it is woken up again to continue.

When a signal call is made, this causes any and all tasks waiting on the signal to be freed to run. If the

signaling tasks knows that only one task can actually use the signal, it can use the signalone call

instead. This will only free up a single task, and leave the rest to wait for the next signal.

Semaphores give tasks an easy method to flag a given event between them. They are most commonly

used to pass data between tasks. A "data provider" task would place data into global structures in the

monitor, then signal to any "data consumer" tasks that the monitor has data.

Semaphores can only be used within a monitor, which is the only place they have meaning. A wait
call would not be useful if it left the monitor lock in effect, blocking any other task from signaling to it.

The wait call releases the lock on the monitor that calls it until it is signaled and emerges from the

wait. Then it reasserts the lock and continues.

Semaphores are implemented under Pascaline as "fair", or having the property that tasks that wait for a

semaphore receive the signal on a "first come-first serve" basis. However, if the signal procedure is

used to signal multiple tasks (as opposed to a signalone call), it is possible that one or more of the

signaled tasks could find that the condition being waited on is no longer true, since another task has

serviced it first. For this reason, wait is used in a loop that checks for the condition being true.

March 6,

2011
THE LANGUAGE PASCALINE

112

monitor lock;

procedure getlock; forward;

procedure putlock; forward;

private

var lockactive: boolean;

 lockfreed: semaphore;

procedure getlock;

begin

 while lockactive do wait(mysignal);

 lockactive := true

end ;

procedure putlock;

begin

 lockactive := false;

 signalone(lockfreed)

end ;

begin

 lockactive := false

end .

Note that signalone could be implemented as signal. This means that the wait loop method should

be used even with signalone.

The equivalent code for semaphore, wait, signal and signal one is:

THE LANGUAGE PASCALINE
March 6,

2011

 113

module signal;

private

type semaphore = record

 one: boolean; ! single/multiple signal flag

 inq: integer; ! input queue pointer

 outq: integer ! output queue pointer

 end ;

var s: semaphore;

! F ind next queue circular position

f unction next(i: integer): integer;

begin

 i f i = maxint then i := 0 else i := i+1

 r esult i

end ;

! Test for queue empty

function empty(var s: semaphore): boolean;

begin

 result s.outq = s.inq

end ;

! Test for queue full

function full(var s: semaphore): boolean;

begin

 result s.outq = next(s.inq)

end ;

procedure wait(var s: semaphore);

var p: integer; ! our place in queue

March 6,

2011
THE LANGUAGE PASCALINE

114

begin

 ! if queue is full, wait for entry

 while full(s) do escape;

 s.inq := next(s.inq); ! advance input queue

 p := s.inq; ! save that position

 while s.outq <> p do escape; ! wait for our turn

 ! if there are more in queue and not single mode, advance

 i f not (s.one and not empty(s)) then s.outq := next(s.outq)

end ;

procedure signal(var s: semaphore);

begin

 ! flag signal complete

 i f not empty(s) then s.outq := next(s.outq);

 s.one := false ! set multiple waiters ok

end ;

procedure signalone(var s: semaphore);

begin

 ! flag signal complete

 if not empty(s) then s.outq := next(s.outq);

 s.one := true ! set single waiters

end ;

begin ! initializer block for signal

 ! set no signal active

 s.inq := 0;

 s.outq := 0

end .

The procedure escape exists in another module. Its only purpose is to break the monitor lock in signal,

which is satisfied by exiting the module and returning. It could do more, for example it could make a

system call to release the rest of its task time.

share other;

procedure escape;

THE LANGUAGE PASCALINE
March 6,

2011

 115

begin

end ;

.

The equivalence implements a fair locking scheme. Each of the waiters for a signal is placed in a first

in, first out queue. For signalone, only the head task or first in receives the signal. For signal, all of

the waiters in the queue receive the signal.

The difference between this equivalent implementation of semaphore, wait, signal and signalone is that

the system specific implementation can arrange for only the prime entry waiting on a signal is

scheduled to run. Thus, there is no polling and no wasted CPU time.

6.38 Channels

A channel is one step beyond a monitor. It does not allow any procedure or subroutine to appear as

public, but instead only allows properties to be exposed publically. As with a monitor, the read and

write blocks of an property are locked.

March 6,

2011
THE LANGUAGE PASCALINE

116

channel ticket bin ;

property ticket : integer ; forward ;

private

const ticketmax = 100;

var ticketbin: array ticketmax of boolean;

 ticketfree : semaphore;

 i: 1.. ticketmax ;

property ticket : integer 6;

var i , f: 0..ticketmax ;

begin ! read

 while notickets do wait(ticketfree); { wait if no tickets }

 ! find the free ticket

 for i := 1 to ticketmax do if ticketbin[i] := false then f := I;

 ticketbin[f] := true; ! allocate ticket

 ticket := f ! place tick et

end ;

begin ! write

 ticketbin[ticket] := false;

 signalone(ticketfr ee) ! signal one ticket was freed

end ;

begin ! constructor

 for i := 1 to 100 do ticketbin[i] := false

end ;

.

Channels are a more advanced multitasking object than monitors because:

1. They donôt have or need the pointer passing restrictions of a monitor, since there are no
parameter lists for procedures or functions.

2. The ñclientò and ñserverò of a channel can be implemented in different threads on the same
processor, different shared memory processors, wholly separate processors, and even

geographically separated processors connected by a network, without the overhead and

problems of remote procedure calls. The server can even be implemented in hardware.

THE LANGUAGE PASCALINE
March 6,

2011

 117

6.39 Classes

class-declaration = ('class' | óthreadô| óatomô) identifier ' [class-parameter-list] ;' ['extends' class-name

';'] block '.' .

class-parameter-list = ó(ó class-parameter { ó;ô class-parameter } ó)ô .

class-parameter = [óviewô] identifier-list ó;ô type-idenifier .

class-name = qualified-identifier .

block = { declaration } ['private' { declaration }] statement-part [';' statement-part] .

declaration = label-declaration-part | constant-definition-part | type-definition-part | variable-

declaration-part | fixed-declaration-part | procedure-declaration ';' | function-declaration

';' .

Modules in Pascaline provide a way to package types, variables, procedures, functions and other

definitions together as a unit to be used by other parts of the program. Classes extend this further by

providing a general description of a module that the program can create any number of instances.

In the Pascaline model, modules are both a description of a class, and the only instance of it.

Classes fit in the program hierarchy between modules and procedures/functions:

Modules

 |

 \ _/

Classes

 |

 \ _/

Procedures/functions

The class is a collection of types, variables and procedures called "members", and it has per-instance

data.

A class is declared by the word-symbol "class", and it can appear anywhere in the declarations of a

global module such as a program or module, etc.

March 6,

2011
THE LANGUAGE PASCALINE

118

program p(input, output) ;

uses mylib;

class myclass;

label 1, 2;

type a = char;

var c, d: integer;

procedure x;

begin

end ;

private

procedure y;

begin

 { optional constructor }

end ;

begin

 { optional destructor }

end .

begin { program }

end .

When a procedure or function appears in a class, it is referred to as a method. A class can refer to any

of the declarations in the surrounding module. The methods of a class can refer to both the variables

inside the class as well as the variables in the module that surrounds it.

As a module can, a class can use the private word-symbol to specify declarations within the class that

are private.

A class does not create any actual variables, procedures and functions when it is defined. A class is a

template for an object. To create an ñobjectò from a class, it must be instantiated, which means to give

the class a complete set of locations in memory. If that memory is static, the instance is static. If the

memory is allocated dynamically, the instance is dynamic.

THE LANGUAGE PASCALINE
March 6,

2011

 119

6.39.1 Static objects

To create a static instance, the class is used to form a type as follows:

type si = instance of c;

Which can be used to form static instances of the class:

var z: si;

The class c is not itself a type, nor can it be used as such. si, however, is a type. To use a class as a

type, the compiler must know if a static or dynamic instance is meant.

A static instance is static even if it is a local of a procedure or function, or instantiated within another

class. An instance does not become dynamic unless it is allocated dynamically via new.

6.39.2 Dynamic objects

To create a dynamic instance, the class is used to form a type as follows:

type di = reference to c;

Which can be used to form a dynamic reference to objects of the class:

var z: di ;

Where c is a class. This creates a special variable used to access the "object" that "instantiates" the

class. The actual creation of the object is done by the standard procedures new and dispose:

new(z); { create new object, referred to by z }

dispose(z); { destroy existing object referred to by z }

The definitions for the object referenced by z can be accessed by the same notation as for a joins

module:

z.c := 1; { as sign value to object variable }

z.x; { call object procedure x }

A reference variable can point to any object defined with a compatible class. It can also point to no

object at all:

z := nil ;

Just as a pointer variable can. Further, two references can be compared, or assigned, just as pointers

can:

March 6,

2011
THE LANGUAGE PASCALINE

120

program p;

class c;

begin

end .

var z, q: reference to c;

begin

 z := nil ; q := z;

 if z = nil then { perform actions on nil }

 if q = z then { perform actions on q = jeje z }

end .

In fact, a reference behaves just as a pointer, but without the need to specify a dereference ("^").

Anytime a qualifier (".") follows a reference, it is understood that the object referenced is being

accessed.

Just as for pointers, a reference can appear in a with statement:

program p;

class c;

begin

end .

var z: reference to c;

begin

 with z do { statements }

end .

This effectively opens up the scope of the object within the code.

Notes:

1. References are treated as pointers with respect to monitors. A reference cannot be exported by

a monitor routine.

THE LANGUAGE PASCALINE
March 6,

2011

 121

6.39.3 Classes as parameters

When a class is passed as a parameter, its dynamic or static form is irrelevant to its parameter status.

Only the var mode can be used on a class as a parameter. The type used for the parameter is the class

itself.

program p;

class c;

var i: integer;

begin

end .

procedure x(var y: c);

begin

 y.i := 1

end ;

begin

 with z do { statements }

end .

6.39.4 Class parameters

Classes accept parameters that are a subset of procedure and function parameters. Only value and

view parameters are accepted in a class parameter list (with the exception of file parameters, which

must always be var under ISO 7185 Pascal rules)
1
.

1
 In ISO 7185 specifying file parameters as var means that they are modified globally, and the routine that is

called does not receive a copy of the entire file. This is true of files in Pascaline as well.

March 6,

2011
THE LANGUAGE PASCALINE

122

program p(output)

class stringc(size: integer);

type string: packed array of char;

var data: ^string; ! string data buffer

 len: integer; ! current length

operator := (d: stringc; view s: string);

var i: integer;

begin

 if max(s) > size then begin ! string is larger than our buffer

 dispose(data);

 new(sdata, max(s));

 size := max(s)

 end ;

 for i := 1 to max(s) do d.sdata[i] := s[i];

 d.len := max(s)

end ;

procedure print;

begin

 for i := 1 to len do write(sdata[i])

end ;

begin ! constructor for string

 new(sdata, size) ! allocate string data

 len := 0 ! clear string

end ;

begin ! destructor for string

 dispose(sdata) ! release space for string data

end .

var mystring(100): instance of string;

THE LANGUAGE PASCALINE
March 6,

2011

 123

begin

 mystring := óhi thereô;

 mystring.print

end .

Class parameters are special in that they are specified when the object formed from the class template

is instantiated. The class parameters are evaluated, and kept as long as the object exists. The

constructor, the destructor, and all of the methods of the class can access the class parameters.

program p

class filelist (size : integer);

var filearray : array of text ; ! array of text files

procedure open(i: integer);

begin

 rewrite(filearray[i])

end ;

begin ! constructor

 new(filearray, size) ! allocate file array

end ;

begin ! destructor

 for i := 1 to size do close(filearray[i]);

 disp ose(filearray) ! release space for string data

end .

var files (100): instance of filelist ;

 i: integer;

begin

 for i := 1 to 100 do files.open;

 for i := 1 to 100 do write(files.filearray[i], i)

end .

March 6,

2011
THE LANGUAGE PASCALINE

124

Note that the actual parameter list for the class appears where it is instantiated. For static instances, this

is the variable declaration for it. For dynamic instances, it is the new statement that creates the object.

Typically, class parameters perform a ñgeometryò change within the object. That is what makes a class

parameter different from just applying a method to it after its constructor executes. A method could not

specify the creation of the parameterized array filelist above. Class parameters have many uses, and

be used to specify any class configuration parameter.

The parameters for the class appear after any parameters for array template geometries. This would

occur if the object was part of a container array:

THE LANGUAGE PASCALINE
March 6,

2011

 125

program p

class filelist(size: integ er);

var filearray: array of text; ! array of text files

procedure open(i: integer);

begin

 rewrite(filearray[i])

end ;

begin ! constructor

 new(filearray, size) ! allocate file array

end ;

begin ! destructor

 for i := 1 to size do close(filearray[i]);

 dispose(filearray) ! release space for string data

end .

var files(10, 100): array of instance of filelist;

 i, j: integer;

begin

 for j := 1 to 10 do begin

 for i := 1 to 100 do files [j] .open;

 for i : = 1 to 100 do write(files [j] .filearray[i], i)

 end

end .

6.39.5 Inheritance

class-declaration = ('class' | óthreadô | óatomô | óliaisonô) identifier ' [class-parameter-list] ;' ['extends'

class-name ';'] block '.' .

expression = simple-expression [relational-operator simple-expression] .

relational-operator = '=' | '<> | '<' | '>' | '<=' | '>=' | 'in' | 'is' .

March 6,

2011
THE LANGUAGE PASCALINE

126

Classes can "inherit" the definitions contained in other classes:

program p;

class x;

begin

end .

class y;

extends x;

begin

end .

begin { program main block }

end .

The extends word-symbol is followed by the class that is inherited.

The meaning of this is that the new class receives all of the definitions present in the inherited class,

and can then add its own. Objects have the special property that all references to a class are compatible

with any class that is built by inheriting definitions from its reference class. Because class references

can be freely assigned between compatible classes, this means that references are effectively

compatible with the classes that it inherits, as well. This means that it is possible for some part of the

definitions for a referenced class to be non-existent. Pascaline can detect and flag an error for an access

to a missing definition in a referenced object either at compile time or runtime.

When a program needs to determine if the definitions it needs to access in an object exist can use a

special expression operator:

THE LANGUAGE PASCALINE
March 6,

2011

 127

program p;

class x;

begin

end .

class y;

extends x;

begin

end .

var yr: reference to x;

begin { program main block }

 new(yr);

 { code to set up and process yr }

 if yi is x then { access members of x inherited in y }

end .

The is operator is true if the referenced object either is the indicated class, or is a class that inherits

from that class. In either case, it means that all of the definitions from the class defined as the base of

the reference exist.

When a new member of a class is defined that has the same name as a member of the inherited class,

the original member of the inherited class is ñshadowedò, and becomes inaccessible in the derived

class.

6.39.6 Overrides for objects

Just as static modules can, classes can override inherited procedures and functions.

March 6,

2011
THE LANGUAGE PASCALINE

128

program p;

class x;

virtual procedure y;

begin

end ;

begin { constructor for x }

end .

class z;

extends x;

override procedure y;

begin

end ;

begin { constructor for z }

end .

begin { main block for p }

end .

The main difference for the use of overrides with objects from the use of overrides with modules is

that the instances of the original object keep their original procedures and functions, and only derived

classes have the procedure or function replaced. Static modules have the original procedure or function

replaced for all callers.

Just as for a module, the original definition of a procedure or function can be accessed by using the

inherited word-symbol:

inherited y; { call the original definition of member procedure y }

Only one override can exist for the same method in an object. The inherited version of a method can

only be accessed within the object where the override exists.

6.39.7 Self referencing

Within the code that makes up the object, its procedures, functions and start and exit blocks, referring

to definitions within the object is done as for any module, dynamic or static. However, an object

THE LANGUAGE PASCALINE
March 6,

2011

 129

frequently needs to access the reference that defines access to it, as well. This is most common in the

case where the object exists in a list of objects, and is done via the word-symbol self:

March 6,

2011
THE LANGUAGE PASCALINE

130

program p;

! General purpose list class

class list;

type ref = reference to list; ! reference to type

var next: ref; ! next item link in list

! Insert node to list at head

procedure insert(var root: ref);

begin

 next := root; ! link this to next

 root := self ! link root to this

end ;

! Index next entry in list

procedure iterate;

begin

 self := next ! go next entry

end ;

! Remove node

procedure remove(var root: ref);

var lp: ref;

begin

 if self = root then root := root.next ! gap from top

 else begin

 lp := root; ! index top of list

 while lp.next <> self do lp.iterate; ! find last entry

 lp.next := next ! gap from list

 end ;

 next := nil ! clear link

THE LANGUAGE PASCALINE
March 6,

2011

 131

end ;

begin ! constructor

 next := nil ! clear next link

end .

! list of integer data values

class dlist;

extends list; ! based on list class

type ref = reference to dlist; ! reference to type

var data: integer ; ! data value

! Find a list entry by value

function find(value: integer): ref;

var lp: ref;

begin

 lp := self ; ! index here to search forward

 if lp <> nil do begin ! the whole list is not nil

 while (lp.data <> value) and (lp.next <> nil) do lp.iterate;

 if lp.data <> value then lp := nil ! not found

 end ;

 result lp ! resulting in found value or nil

end ;

begin ! constructor

 data := 0 ! clear data value

end .

var mylist, lp: dlist.ref; ! our data list

procedure newvalue(value: integer);

begin

March 6,

2011
THE LANGUAGE PASCALINE

132

 new(lp);

 data := value;

 lp.insert(mylist)

end ;

begin

 ! place some test values in a list

 newvalue(123);

 newvalue(42);

 newvalue(1);

 ! Find an entry

 lp := mylist.find(42);

 ! And remove it

 lp.remove(root);

 dispose(lp);

 ! pri nt remaining list entries

 writeln('The list contains:');

 lp := mylist;

 while not (lp = nil) do begin

 writeln('Value: ' , lp.data);

 lp.iterate

 end

end .

self stands in for the reference that the object being operated on is based from.

6.39.8 Constructors and destructors

If a constructor or constructor and destructor exists for a class, they are executed when the object is

created by new, or at the start of the objectôs defining block, and when the object is disposed of by

dispose, or at the end of the objectôs defining block. The constructor is executed on a new, and the

destructor is executed on dispose. Just as for a static module, constructors give an opportunity to set

up and tear down an object.

When an object has inherited classes, the derived class must specifically call the base class constructor.

The derived class cannot access the members of the base class until its constructor is called:

THE LANGUAGE PASCALINE
March 6,

2011

 133

program p;

class x(i: integer) ;

begin

end .

class y(c: char);

extends x;

begin

 x(ord(c));

 { statements accessing members of x }

end .

var yi(óaô): instance of y;

 xi(42): instance of x;

begin { program main block }

end .

The constructor of a derived class is the only place such an explicit constructor call can take place. The

base class is called specifically by name with the constructor parameter list. Outside of the derived

class constructor, the base class parameter list is used as normal for classes.

The explicit call of base class constructors gives two important abilities:

1. It allows the derived class to set up the parameters it needs for the base class.

2. It allows the derived class to have a different list of parameters than the base class.

Only the constructors of base classes are called explicitly. The destructor is called automatically, in the

reverse order of construction, when the object is disposed. When an object is torn down, the derived

class has the ability to deactivate itself before the class it is based on is deactivated.

6.39.9 Operator overloads in classes

When an operator overload occurs in a class, it can use the general form to refer to the specific object

at hand:

March 6,

2011
THE LANGUAGE PASCALINE

134

program p;

class complex ;

type ci = instance of complex;

var r, i: real;

operator +(var lv, rv: ci);

begin

 lv.r := lv.r+rv.r; ! add real part

 lv.i := lv.i+rv.i ! add imaginary part

end;

begin ! initializer for complex

end .

begin ! program main block

end .

Pascaline allows a short form where the left side of the operator always is the class of the execution

context:

THE LANGUAGE PASCALINE
March 6,

2011

 135

program p;

class complex ;

type ci = instance of complex;

var r, i: real;

operator +(var rv: ci);

begin

 r := r+rv.r; ! add real part

 i := i+rv.i ! add imaginary part

end;

begin ! initializer for complex

end .

begin ! program main block

end .

That is, the leftmost operand of the operator function parameters is left off. The result is that the left

side of the operator is performed in the context of the object on the left. The result is just as if the

present class was declared as the first parameter of the operator function. For unary functions + and -,

no parameter is specified.

6.39.10 Derivation vs. composition

Pascaline supports new classes formed from old classes by either derivation or composition.

Derivation is a class that has another class as its base class. Composition is a class that includes an

instance of the class:

March 6,

2011
THE LANGUAGE PASCALINE

136

program p;

class base;

var i: integer;

.

class composition;

var bi: instance of base;

.

var ci: instance of composition;

begin

 ci.bi.i := 10

end .

Building classes by composition is a powerful technique, and sometimes is more appropriate than

building classes by derivation. Multiple inherence in Pascaline is not possible using derived classes,

but it can be done with composition.

6.39.11 Parallel classes

Just as modules have different versions for parallel tasking, classes come in different forms to enable

tasking. The following classes are the functional equivalents of the module types:

Module type Class type

process thread

monitor atom

channel liaison

share <none>

A thread class has no visible members at all. Its constructor starts and is executed within a new

thread. All members must be private:

THE LANGUAGE PASCALINE
March 6,

2011

 137

program p;

uses mymonitor;

thread lighttask ;

private

var a: integer ;

begin ! constructor for lighttask

 a := getdata;

 putdata(a)

end .

begin ! main block

end .

A process module is limited to creating only a single parallel thread of execution within the program.

The thread class can create an unlimited number of threads.

Unlike a process, a thread class can have a destructor. The destructor is executed in the context of

the thread. At the end of the destructor, the thread is terminated.

thread classes can use either monitor modules, or can use a special form of class known as the atom:

March 6,

2011
THE LANGUAGE PASCALINE

138

program p;

atom fairlockc;

procedure get ; forward;

procedure put ; forward;

private

const maxque = 255; { maximum number of queued entries }

type queptr = 0..maxque;

var released: semaphore;

 inp, outp: queptr;

procedure incptr(var p: queptr);

begin

 if p < maxque then p := p+1 else p := 0

end ;

procedure get ;

var inps: 0..maxque;

begin

 inps := inp; { save the current queue position }

 incptr(inp); { advance the input pointer }

 while inps <> outp do wait(released);

end ;

procedure put ;

begin

 incptr(outp); { advance the output pointer }

 signalone(released) { signal the release of the lock }

end ;

begin

 inp := 0; { clear input and output pointers }

 outp := 0

end .

var lock : instance of fairlockc ; ! create a lock

THE LANGUAGE PASCALINE
March 6,

2011

 139

thread printtask c;

private

begin { constructor for printtaskc }

 while true do begin

 lock.get; ! aquire lock to output

 writeln(óI am a threadô); ! print

 lock.put ! release lock

 end

end .

var t: instance of printtaskc ;

begin { main block }

 while true do begin

 lock.get; ! aquire lock to output

 writeln(óI am the main programô); ! print

 lock.put ! release lock

 end

end .

Note: this program implements a ñsecond orderò parallel task lock to allow for the fact that prints of

whole lines are not atomic in Pascaline. The action of the program is to alternately print whole lines

from the main and the subthread.

An atom cannot have variables in its public section. It is ñsealedò and must perform all of its actions

via methods.

Each of the methods of an atom acquires a lock specific to the atom before performing its work.

Semaphores and signals are available to an atom. Thus, it can serve as a go-between for thread classes,

processes, and the main program.

A liaison goes further still than an atom, and allows only properties to be present in its interface

section.

March 6,

2011
THE LANGUAGE PASCALINE

140

program p;

liason stringdictionary ;

const bufmax = 100;

type cmdval = (none, writestring, readstring);

 cmdrec = record

 idlen : 1..buf max;

 idstr : packed array [1..bufmax];

 strlen: 1..bufmax;

 strdat : packed array [1..bufmax]

 end ;

property command: cmdval ; forward ;

property params: cmdrec; forward ;

private

type string: packed array of char;

 strptr: ^strrec;

 strrec: record

 next: strptr;

 name: pstring; ! name of string

 data: pstring ! data contained in string

 end ;

var strlst: strptr; ! list of current string entries

 p: strptr; ! pointer to iterate list

 cr: cmdrec; ! this is the class global copy of the params

! Compare strings with length

function strcmp(len: integer; var a, b: string): boolean;

var r: boolean;

begin

 r := true; ! set default equal

 if len <> max(b) then

 r := false ! return false if lengths unequal

 else for i := 1 to len do if a[i] <> b[i] then r := false;

 result r ! return compare result

THE LANGUAGE PASCALINE
March 6,

2011

 141

end ;

! Operate the command interface

property command: commandval;

begin ! read definition

 command := none ! read is a meaningless request here

end ;

var i: 1..bufmax;

begin ! write definition

 if command = writestring then begin ! write string request

 new(p); ! get a new string entry

 new(p ^.name, cr.idle n); ! create identifier string

 new(p^.data, cr.strlen); ! create data string

 ! copy name to string entry

 for i := 1 to cr.idlen do p^.name[i] := idstr[i];

 ! copy data to a string

 for i := 1 to cr.strlen do p^ .data [i] := strdat [i] ;

 p^.next := strlst; ! push to string list

 strlst := p

 end else if commandval = readstr ing then begin

 ! read string request

 for i := 1 to bufmax do cr.idstr[i] := ó ó; ! clear result

 p := strlst; ! find string in list

 while p <> nil do begin

 if strcmp(cr.idlen, cr.idstr, p^.name) then begin

 ! found, copy data back to transfer record

 cr.idlen := max(p^.name);

 for i := 1 to max(p^.name) do cr.idstr[i] := p^.name[i]

 end ;

 p := p^.next ! next string entry

 end

end ;

March 6,

2011
THE LANGUAGE PASCALINE

142

! operate the parameters

property params: cmdrec;

begin ! read definition

 params := cr ! copy local definition to client

end;

begin ! write definition

 cr := params ! copy client definition to local

end;

begin ! stringdictionary constructor

 strlst := nil ! clear string list

end ;

begin ! stringdictionary destructor

 ! dispose of string list

 while strlst <> nil do begin

 p := strlst; ! gap top entry from list

 strlst := strlst^.next;

 dispose(p^.name); ! dispose of string name

 dispose(p^.data); ! dispose of string data

 end

end .

var strdic: instance of stringdictionary; ! instantiate dictionary

 cr: cmdrec; ! our copy of the parameter record

procedure putstr(var len: integer; var d, s: string);

begin

 len := max(s); ! place length

 for i := 1 to len do d[i] := s[i] ! copy string

end ;

begin

THE LANGUAGE PASCALINE
March 6,

2011

 143

 ! add a string to the dictionary

 putstr(cr.idlen, cr.idstr, óuserdataô);

 putstr(cr.strlen, cr.strdat, óJohn H. Westonô);

 strdic.params := cr; ! set up string data

 strdic. command := writestring; ! write the string record

 ! find existing record

 putstr(cr.idlen, cr.idstr, óuserdataô);

 strdic.params := cr; ! set up string data

 strdic.command := readstring; ! write the string record

 ! now recovered data is in record, or is blank if none found

end .

In this example, named strings are transferred across an interface, possibly to a remote process or

processor. The client program sets up a parameter record for the liaison based server and then

commands the server to perform it.

The example illustrates many of the challenges of property based design. The liaison cannot export the

definitions in the parameter record, and that property is even sealed from the other methods in the

same liaison. That is why the only job of the params property is to export the read or written data to

the liaison itself. The reward for enduring the difficulties of property based design is programs that can

be modularized across multiple processors, perhaps in distant locations, and also the ability of

Pascaline to unify accesses to software, servers, and low level hardware under a single model.

Notes:

1. The rule that accesses external to the property activate the read or write blocks of the property

mean that other properties in the same surrounding block activate each other.

2. Because properties can be structured types, any amount of data can been arranged as a single

property.

3. A structured property implies nothing about the accesses to its substructure. It is only

meaningful as a whole structure assignment.

There is no class based version of a share module. Since a share module contains no variables, there

would be no point to an instantiation of such a class.

THE LANGUAGE PASCALINE
March 6,

2011

 145

A Annex A: Collected syntax

actual-parameter = expression | variable-access | procedure-identifier | function-identifier .

actual-parameter-list = '(' actual-parameter { ',' actual-parameter } ')' .

adding-operator = '+' | '-' | 'or' | 'xor' .

apostrophe-image = '"' .

array-type = 'array' [dimension-specifier] 'of' component-type .

array-value-constructor = 'array' value-constructor { ',' value-constructor } 'end' .

array-variable = variable-access .

assignment-statement = (variable-access | function-identifier) ':=' expression .

attribute = 'overload' | 'static' | 'virtual' | 'override' .

base-type = ordinal-type .

binary-digit = '0' | '1' | '_' .

binary-digit-sequence = octal-digit { binary-digit }

binary-integer = '%' binary-digit-sequence .

block = { declaration } ['private' { declaration }] statement-part [';' statement-part] .

Boolean-expression = expression .

buffer-variable = file-variable '"' .

case-constant = constant .

case-constant-range = case-constant ['..' case-constant] .

case-constant-list = case-constant-range { ',' case-constant-range } .

case-index = expression .

case-list-element = case-list-statement | case-list-default .

case-list-default = 'else' statement .

case-list-statement = case-constant-list ':' statement .

case-statement = 'case' case-index 'of' case-list-element { ';' case-list-element } [';'] 'end' .

character-string = ''' string-element { string-element } ''' .

March 6,

2011
THE LANGUAGE PASCALINE

146

class-declaration = ('class' óthreadô | óatomô | óliaisonô) identifier ' [class-parameter-list] ;' ['extends'

class-name ';'] block '.' .

class-name = qualified-identifier .

class-parameter-list = ó(ó class-parameter { ó;ô class-parameter } ó)ô .

class-parameter = [óviewô] identifier-list ó;ô type-idenifier .

component-type = type-denoter .

component-variable = indexed-variable | field-designator .

compound-statement = 'begin' [try-end] statement-sequence [óresultô expression] 'end' .

conditional-statement = if-statement | case-statement | try-statement .

constant = [sign] constant-term { adding-operator constant-term } .

constant-definition = identifier '=' constant .

constant-définition-part = ['const' constant-definition ';' { constant-definition ';' }] .

constant-factor = '(' constant ')' | 'not' constant-factor | character-string | constant-identifier | unsigned-

integer .

constant-identifier = qualified-identifier .

constant-term = constant-factor { multiplying-operator constant-factor } .

control-variable = entire-variable .

decimal-integer = digit-sequence .

declaration = label-declaration-part | constant-definition-part | type-definition-part | variable-

declaration-part | fixed-declaration-part | procedure-declaration ';' | function-declaration ';'

| operator-declaration ó;ô | property-declaration ó;ô .

digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' ó_ô .

digit-sequence = digit { digit } .

dimension-specifier = index-specifier | range-specifier .

directive = letter { letter | digit } .

domain-type = type-identifier .

else-part = 'else' statement .

empty-statement = .

entire-variable = variable-identifier | 'self' .

THE LANGUAGE PASCALINE
March 6,

2011

 147

enumerated-type = '(' identifier-list ')' .

except-series = except-specifier { except-specifier } [except-unconditional] .

except-specifier = óonô exception-identifier { ó,ô exception-identifier } óexceptô statement .

except-unconditional = óexceptô statement .

expression = simple-expression [relational-operator simple-expression] .

factor = variable-access | unsigned-constant | function-designator | type-identifier '(' expression ')' | set-

constructor | '(' expression ')' | 'not' factor .

field-designator = record-variable '.' field-specifier | field-designator-identifier .

field-designator-identifier = qualified-identifier .

field-identifier = qualified-identifier .

field-list = [(fixed-part [';' variant-part] | variant-part) [';']] .

field-specifier = field-identifier .

file-type = 'file' 'of' component-type .

file-variable = variable-access .

final-value = expression .

fixed-declaration = identifier-list ':' type-denoter '=' value-constructor .

fixed-declaration-part = ['fixed' fixed-declaration ';' { fixed-declaration ';' }] .

fixed-part = record-section { ';' record-section } .

for-statement = 'for' control-variable ':=' initial-value ('to' | 'downto') final-value 'do' statement .

formal-identifier = identifier .

formal-parameter-list = '(' formal-parameter-section { ';' formal-parameter-section } ')' .

formal-parameter-section = value-parameter-specification | variable-parameter-specification | view-

parameter-specification | out-parameter-specification | procedural-parameter-specification | functional-

parameter-specification .

fractional-part = digit-sequence .

function-block = block .

function-declaration = function-heading ';'directive | function-identification ';' function-block |

function-heading ';' function-block .

function-designator = function-identifier [actual-parameter-list] .

March 6,

2011
THE LANGUAGE PASCALINE

148

function-heading = attribute 'function' formal-identifier [formal-parameter-list] ':' result-type .

function-identification = attribute 'function' identifier .

function-identifier = qualified-identifier .

functional-parameter-specification = function-heading .

goto-statement = 'goto' label .

hex-digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | '_' .

hex-digit-sequence = hex-digit { hex-digit } .

hex-integer = '$' hex-digit-sequence .

identified-variable = pointer-variable '"' .

identifier = letter | '_' { letter | digit | '_' } .

identifier-list = identifier { ',' identifier } .

if -statement = 'if' Boolean-expression 'then' statement [else-part] .

index-expression = expression .

index-specifier = '[' index-type { ',' index-type } ']' .

index-type = ordinal-type .

indexed-variable = array-variable '[' index-expression { ',' index-expression } ']' .

initial-value = expression.

instance-type = 'instance' 'of' class-name .

label = digit-sequence | identifier .

label-declaration-part = ['label' label { ',' label } ';'] .

letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' | 'y' |

'z' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' | 'U' | 'V' | 'W' |

'X' | 'Y' | 'Z'.

link-specification = 'uses' | 'joins' .

member-designator = expression ['..' expression] .

module = module-heading ';' module-block '.' .

module-block = uses-declaration-part { module-declaration } ['private' { module-declaration }]

statement-part [';' statement-part] .

module-declaration = declaration | class-declaration .

THE LANGUAGE PASCALINE
March 6,

2011

 149

module-heading = module-type identifier ['(' module-parameter-list ')'] .

module-name = identifier .

module-parameter-list = identifier-list .

module-type = 'program' | 'module' | 'process' | 'monitor' | 'share' .

multiplying-operator = '*' | '/' | 'div' | 'mod' | 'and' .

new-ordinal-type = enumerated-type | subrange-type .

new-pointer-type = '^' domain-type .

new-structured-type = ['packed'] unpacked-structured-type .

new-type = new-ordinal-type | new-structured-type | new-pointer-type .

octal-digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '_' .

octal-digit-sequence = octal-digit { octal-digit } .

octal-integer = '&' octal-digit-sequence .

operator-declaration = operator-identifier operator-heading ó[ó:ô result-type] .

operator-heading = attribute 'procedure' formal-identifier [formal-parameter-list] .

operator-identifier = ónotô | ó+ô | ó-ó | ó*ô | ó/ô | ódivô | ómodô | óandô | óorô | ó< ó | ó>ô | ó=ô | ó<=ô | ó>=ô |

óinô | óisô | ó:=ô .

ordinal-type = new-ordinal-type | ordinal-type-identifier .

ordinal-type-identifier = type-identifier .

out-parameter-specification = 'out' identifier-list ':' type-identifier .

pointer-type = new-pointer-type | pointer-type-identifier .

pointer-type-identifier = type-identifier .

pointer-variable = variable-access .

procedural-parameter-specification = procedure-heading .

procedure-and-function-declaration-part = { (procedure-declaration | function-declaration) ';' } .

procedure-block = block .

procedure-declaration = procedure-heading ';' directive | procedure-identification ';' procedure-block |

procedure-heading ';' procedure-block .

procedure-heading = attribute 'procedure' formal-identifier [formal-parameter-list] .

March 6,

2011
THE LANGUAGE PASCALINE

150

procedure-identification = attribute 'procedure' identifier .

procedure-identifier = qualified-identifier .

procedure-statement = procedure-identifier ([actual-parameter-list] | read-parameter-list | readln-

parameter-list | write-parameter-list | writeln-parameter-list) .

property-identifier = qualified-identifier .

property-declaration = attribute property-identifier ó:ô type-denoter ó;ô read-block ó;ô write-block ó;ô

qualified-identifier = identifier { '.' identifier } .

range-specifier = unsigned-integer { ',' unsigned-integer } .

read-block = block .

read-element = variable-access | character-string .

read-parameter-list = '(' [file-variable ','] read-element { ',' read-element } ')' .

readln-parameter-list = ['(' (file-variable | read-element) { ',' read-element } ')'] .

real-type-identifier = type-identifier .

record-section = identifier-list ':' type-denoter .

record-type = 'record' field-list 'end' .

record-value-constructor = 'record' value-constructor { ',' value-constructor } 'end' .

record-variable = variable-access .

record-variable-list = record-variable { ',' record-variable } .

reference-type = 'reference' 'to' class-name .

relational-operator = '=' | '<> | '<' | '>' | '<=' | '>=' | 'in' | 'is' .

repeat-statement = 'repeat' statement-sequence 'until' Boolean-expression .

repetitive-statement = repeat-statement | while-statement | for-statement .

result-type = simple-type-identifier | pointer-type-identifier .

scale-factor = [sign] digit-sequence .

set-constructor = '[' [member-designator { ',' member-designator }] ']' .

set-type = 'set' 'of' base-type .

sign = '+' | '-' .

signed-integer = [sign] unsigned-integer .

THE LANGUAGE PASCALINE
March 6,

2011

 151

signed-number = signed-integer | signed-real .

signed-real = [sign] unsigned-real .

simple-expression = [sign] term { adding-operator term } .

simple-statement = empty-statement | assignment-statement | procedure-statement | goto-statement .

simple-type = ordinal-type | real-type-identifier .

simple-type-identifier = type-identifier .

special-symbol = '+' | '-' | '*' | '/' | '=' | '<' | '>' | '[' | ']' | '.' | ',' | ':' | ';' | '^' | '(' | ')' | '<>' | '<=' | '>=' | ':=' | '..' | '(.'

| '.)' | '@' | word-symbol .

statement = [label ' :'] (simple-statement | structured-statement) .

statement-part = compound-statement .

statement-sequence = statement { ';' statement } .

string-character = one-of-a-set-of-implementation-defined-characters .

string-element = apostrophe-image | string-character .

structured-statement = compound-statement | conditional-statement | repetitive-statement | with-

statement .

structured-type = new-structured-type | structured-type-identifier .

structured-type-identifier = type-identifier .

subrange-type = constant '..' constant .

tag-field = identifier .

tag-type = ordinal-type-identifier .

term = factor { multiplying-operator factor }.

try-end = (except-series | except-unconditional) ['else' statement] .

try-statement = 'try' (statement-sequence)] try-end .

type-definition = identifier '=' type-denoter .

type-definition-part = ['type' type-definition ' ;' { type-definition ';' }] .

type-denoter = type-identifier | new-type .

type-identifier = qualified-identifier .

unpacked-structured-type = array-type | record-type | set-type | file-type | reference-type | instance-type

.

March 6,

2011
THE LANGUAGE PASCALINE

152

unsigned-constant = unsigned-number | character-string | constant-identifier | 'nil' .

unsigned-integer = decimal-integer | hex-integer | octal-integer | binary-integer .

unsigned-number = unsigned-integer | unsigned-real .

unsigned-real = digit-sequence '.' fractional-part ['e' scale-factor] | digit-sequence 'e' scale-factor .

uses-declaration-part = [link-specification module-name { ',' module-name }] .

value-constructor = array-value-constructor | record-value-constructor | constant .

value-parameter-specification = identifier-list ':' type-identifier .

variable-access = entire-variable | component-variable | identified-variable | buffer-variable .

variable-declaration = identifier-list [ó(ó expression { ó,ô expression ó)ô] ':' type-denoter .

variable-declaration-part = ['var' variable-declaration ';' { variable-declaration ';' }] .

variable-identifier = qualified-identifier .

variable-parameter-specification = 'var' identifier-list ':' type-identifier .

variant = case-constant-list ':' '(' field-list ')' .

variant-part = 'case' variant-selector 'of' variant { ';' variant } .

variant-selector = [tag-field ':'] tag-type .

view-parameter-specification = 'view' identifier-list ':' type-identifier .

while-statement = 'while' Boolean-expression 'do' statement .

with-statement = 'with' record-variable-list 'do' statement .

word-symbol = 'and' | 'array' | 'begin' | 'case' | 'const' | 'div' | 'do' | 'downto' | 'else' | 'end' | 'file' | 'for' |

'function' | 'goto' | 'if' | 'in' | 'label' | 'mod' | 'nil' | 'not' | 'of' | 'or' | 'packed' | 'procedure' |

'program' | 'record' | 'repeat' | 'set' | 'then' | 'to' | 'type' | 'until' | 'var' | 'while' | 'with' |

'forward' | 'module' | 'uses' | 'private' | 'external' | 'view' | 'fixed' | 'process' | 'monitor' |

'share' | 'class' | 'is' | 'overload' | 'override' | 'reference | 'joins' | 'static' | 'inherited' | 'self' |

'virtual' | 'try' | 'except' | 'extends' | 'on' | 'result' | 'operator' | 'instance' | óstartô .

write-block = block .

write-parameter = expression [':' expression [':' expression]] .

write-parameter-list = '(' [file-variable ','] write-parameter { ',' write-parameter } ')' .

writeln-parameter-list = ['(' (file-variable | write-parameter) { ',' write-parameter } ')'] .

THE LANGUAGE PASCALINE
March 6,

2011

 153

Notes:

1. The syntax BNFs do not dictate semantics. A program that is perfectly valid according to the

above syntax may be invalid semantically.

THE LANGUAGE PASCALINE
March 6,

2011

 155

B Annex B: Standard exceptions

Normally, exceptions are either declared by the program or imported from external modules. However,

several exceptions exist that are generated by the support libraries used to implement the base

Pascaline language. These exceptions are all declared at the system level in Pascaline, and any

program can handle such exceptions.

The following are a list of standard exceptions. If an implementation does not use a particular

exception, it is recommended that the exception name be provided, even if the exception will never be

thrown. This will insure software compatibility for applications that reference the exceptions here.

Name Meaning

ValueOutOfRange Value out of range

ArrayLengthMatch Array lengths do not match

CaseValueNotFound Case value not found

ZeroDivide Zero divide

InvalidOperand Invalid Operand

NilPointerDereference Nil pointer dereference

RealOverflow Real overflow.

RealUnderflow Real underflow.

RealProcessingFault Real processing fault.

TagValueNotActive Tag value for enclosing variant

not active.

TooManyFiles Too many files active.

FileIsOpen File is open, should be closed.

FileAlreadyNamed Attempt to name a file already

named.

FileNotOpen File is closed, should be open.

FileModeIncorrect File in incorrect mode.

InvalidFieldSpecification Invalid field specification.

InvalidRealNumber Invalid real number.

InvalidFractionSpecification Invalid fraction specification;

InvalidIntegerFormat Invalid integer format

IntegerValueOverflow Integer value overflow.

InvalidRealFormat Invalid real format.

EndOfFile End of file encountered.

InvalidFilePosition Invalid file position specified.

FilenameTooLong The filename passed to the system

was too long.

FileOpenFail Unable to open a file.

FileSIzeFail Unable to find size of file.

FileNotOpen An operation was attempted on a

closed file.

FileCloseFail Unable to close a file.

FileReadFail Unable to read a file.

FileWriteFail Unable to write a file.

March 6,

2011
THE LANGUAGE PASCALINE

156

FilePositionFail File position fails.

FileDeleteFail File delete fails.

FileNameChangeFail File name change fails.

SpaceAllocateFail Dynamic space allocation fails.

SpaceReleaseFail Dynamic space release fails.

SpaceAllocateNegative Attempt to allocate negative

space.

CannotPerformSpecial Cannot perform operation on

special file.

CommandLineTooLong Command line too long.

ReadPastEOF Read attempted past file EOF.

FileTransferLengthZero Attempted file transfer of zero

length.

FileSizeTooLarge File size is too large to return.

FilenameEmpty Filename is empty.

CannotOpenStandard Cannot open standard I/O file.

TooManyTemporaryFiles Too many temporary files in use.

InvalidFilePosition Invalid file position specified.

InputBufferOverflow Input buffer overflows.

TooManyThreads Maximum number of threads

exceeded.

CannotStartThread Cannot start new thread

InvalidThreadHandle Invalid thread handle

CannotStopThread Cannot stop thread

TooManyIntertaskLocks Maximum number of interthread

locks exceeded.

InvalidLockHandle Invalid interthread lock handle

LockSequenceFail Invalid intertask lock sequence

detected

TooManySignals Too many intertask signals active

at once

CannotCreateSignal Cannot create new intertask

signal

InvalidSignalHandle Invalid intertask signal handle

CannotDeleteSignal Cannot delete intertask signal

CannotSendSignal Cannot send intertask signal

WaitForSignalFail Failure waiting for intertask

signal

If an exception occurs that is not one of the above, it goes to the general exception.

If a program handles a system exception, but does not correct the problem, the program may simply

fail later in the run, perhaps with a different exception. It is not advised to simply capture and then

ignore exceptions.

THE LANGUAGE PASCALINE
March 6,

2011

 157

The implementation typically connects the list of standard exceptions to equivalent exceptions in its

implementation libraries. In this case, the complete set of implementation specific exceptions can be

utilized by directly referencing the exceptions in the implementation libraries.

THE LANGUAGE PASCALINE
March 6,

2011

 159

C Annex C: Undefined program parameter binding

To further the idea of program header parameter binding to external entities, this annex gives a

suggested method of such bindings.

Program parameters are divided into three classes:

1. Predefined parameters, such as input, output, error, list and command.

2. Undefined text files.

3. Other than text type parameters.

Pascaline defines bindings for the first category, and this annex details a standard methodology for

binding the second. The third category is left to the implementation, but the requirement exists for

there to be an error if these parameters cannot be bound correctly (see ISO 7185 6.10 "Programs").

The suggested binding method for text file program parameters with names other than the predefined

names is called "command parameter binding". For each such program parameter, reading from left to

right in the program header, each file is connected to a parameter of the command used to activate the

program as follows:

1. A filename is parsed from the command file.

2. The filename parsed is assigned to the parameter file.

The equivalent code to do this is:

procedure get_command_filename(var f: text);

var fn: packed array maxlin of char;

begin

 for i := 1 to 100 do fn := ' '; { clear filename }

 { skip leading spaces }

 while (command^ = ' ') and not eoln(command) do get(command);

 { get file characters }

 i := 1; { set first character position }

 while (command^ <> ' ') and not eoln (command) do begin

 fn[i] := command^;

 get(command);

 i := i+1

 end ;

 assign(f, fn) { set filename }

end ;

Where maxlin is the maximum string length, and assuming that command appears as a header

parameter.

March 6,

2011
THE LANGUAGE PASCALINE

160

The result is that the next reset or rewrite applied to the file will cause the file, with the name

specified in the command file, to be activated. Note that this method does not allow the file to be

closed, then reopened, since the close procedure is defined as removing the name of the file from the

file variable.

The side effect of parsing the actual file name from the command file is that the filename is removed

from the command file, since the current read position of the file is skipped.

The point at which the above binding of the program parameters to command file filenames is before

the module that contains the program parameters is activated. This means that further reads from the

command file (if it appears in the header) read data that appears after any text file names have been

parsed and skipped.

THE LANGUAGE PASCALINE
March 6,

2011

 161

D Annex D: Character sets

Like ISO 7185 Pascal, Pascaline has no standard character set representation. Individual characters can

be any size, and the mapping of character numerical values to character glyphs or figures is entirely

system dependent.

The character set used must provide all of the characters in the word-symbols and special symbols in

Pascaline, with the addition of a space.

This annex describes two different character sets that are commonly used with Pascaline, the ISO

8859-1 and ISO 10646 sets. For the purposes of this annex, it is assumed that users of alternative ISO

8859 code pages will be migrating to the ISO 10646 standard (see below).

D.1 ISO 8859-1 Character Set Encodings

Pascaline itself uses only the lower page (128) ISO 8859-1 codes, which are common to all ISO 8859

pages, and only uses a subset of those.

The ISO 8859-1 characters require a set of 256 elements (or 32 bytes) to be able to represent the

declaration:

set of char;

D.2 ISO 10646 Character Set Encodings

The ISO 10646 or Unicode character standard specifies up to 32 bits of character values.

Variant Bits Set of char

requirement

UTF- 8 8 32 bytes

UTF- 16 16 8192 bytes

UTF- 32 32 536870912 bytes

The exact format of a character under the Unicode system is system dependent. It commonly varies

according to if the machine implemented on arranges its bytes from most significant to least (so called

"big endian"), or from least significant to most (so called "little endian").

Unicode uses the first 0 to 127 character values to represent the ASCII (or ISO 646) character set. It

uses the first 0 to 255 values to represent the 8859-1 or latin-1 character set. Unicode also includes all

of the other parts of the ISO 8859 code pages in higher value codes.

D.3 Unicode text file I/O

When considering Unicode formats, it is necessary to consider both the internal memory format, and

the form as written and read from Pascal text files. In the case of Unicode, they are not necessarily the

same.

There are several in-file possible text representations for Unicode. The most common are:

March 6,

2011
THE LANGUAGE PASCALINE

162

Name Bits Endian mode

UTF- 8 8 None

UTF- 16 16 Big or little endian

UTF- 32 32 Big or little endian

Although Unicode represents up to 32 bits of character code information, it is possible to represent all

of these codes in either the UTF-8 or UTF-16 formats due to their use of escapes.

When big and little endian modes are considered, there are a total of possible combinations of 5

different unique formats.

There is no runtime method defined in standard Pascaline to set or switch between input and output

text formats. Such selection is usually performed by a compile time change that may include special

libraries, compiler options, or some combination.

The "Pascaline normal" or suggested default format for text file I/O, is UTF-8. UTF-8 has the

following special advantages:

1. It is compact. It represents the most common characters in the fewest number of bits.

2. It is downward compatible with ASCII or ISO 646. When a text file consists entirely of ASCII

characters, the file will be identical to an ASCII file.

3. It does not have any endian mode.

To be fair, UTF-8 also has disadvantages:

1. When representing files whose contents are mainly outside the 0-255 code range, it may

actually increase the net size of the text file.

2. It moves the ISO 8859-1 128-255 code range characters outside of the 8 bit range, making text

files containing such characters possibly larger, and obfuscates the representation of such

characters.

Use of UTF-8 makes it possible for Pascaline compilers that allow both Unicode and ISO 8859 support

to switch character set modes and still keep the same text file format.

D.4 Use of different character sets

Pascaline is designed to use only one character set at a time. There is no built in system to represent

more than one character set type at once, nor to switch between character set types at runtime. The

configuration for character set is done as a compile time option.

THE LANGUAGE PASCALINE
March 6,

2011

 163

E Annex E: Character escapes

Pascaline, like ISO 7185 Pascal, does not specify a particular character set. However, the most

common implementations of character sets, are ISO 8859-1, and Unicode with representations from

ISO 10646. All of these character codes have ASCII as a subset. Not required, but suggested for

standard Pascaline implementations are character escape sequences. The purpose of a character escape

sequence is to allow access to non-printable characters, also known as "control characters" within these

character sets. Additionally, there may be characters that, while they are printable, cannot be

represented in program source without a particular font or character set loaded into the host operating

system. In this case, character escapes allow access to these character by character code number.

The appearance of an escape within a character string is indicated by the ó\ô character. Following the

ó\ô character is one of:

1. <number>

2. <control-identifier>

3. <char>

The last construct simply means that the meaning of any character, including backslash itself, can be

"forced" by prefacing it with a backslash. The backslash itself must appear via a "backslash image" of

ó\ô.

The <number> can be any valid character sequence code. High quality Pascaline implementations will

allow '$', '&' or '%' radix marked numbers to appear after the backslash character. Example:

óThis is a line\ $dô

The digits that constitute the character are limited by radix and number of digits. That is, any digit

outside of the radix of the number will terminate the escape sequence. For example:

óThe character is: \ &0018ô

Gives an octal character escape of "01", followed by the character ó8ô, because 8 is beyond the octal

radix.

Similarly, only as many digits as are needed to form a character in the current character set of the

compiler are used:

Base ISO 8859 - 1 UNICODE 16 bit UNICODE 32 bit

Decimal 3 digits 5 digits 10 digits

Octal 3 digits 6 digits 11 digits

Hexadecimal 2 digits 4 digits 8 digits

Binary 8 digits 16 digits 32 digits

So for example:

óThe character is: \$0045ô

March 6,

2011
THE LANGUAGE PASCALINE

164

is not the character for $45, but the character value $00 followed by the characters "45". Leading zeros

are not discarded in numbers.

It is possible for the escape sequence to be ambiguous. In this case, the backslash character must also

be used as a terminator:

óThe number is: \$c0ô

Is ambiguous if the desired string is 'The number is ' followed by '12' and ó0ô, so use instead:

óThe number is: \$c\0ô

Control identifiers give easy access to control codes in the ISO 8859-1 character set. For ISO 8859-1,

they are:

THE LANGUAGE PASCALINE
March 6,

2011

 165

Identifier Meaning

NUL Null character

SOH Start of Header

STX Start of Text

ETX End of Text

EOT End of Transmission

ENQ Enquiry

ACK Acknowledgment

BEL Bell

BS Backspace

HT Horizontal Tab

LF Line feed

VT Vertical Tab

FF Form feed

CR Carriage return[h]

SO Shift Out

SI Shift In

DLE Data Link Escape

DC1, XON Device Control 1

DC2 Device Control 2

DC3, XOFF Device Control 3

DC4 Device Control 4

NAK Negative Acknowledgement

SYN Synchronous Idle

ETB End of Trans. Block

CAN Cancel

EM End of Medium

SUB Substitute

ESC Escape

FS File Separator

GS Group Separator

RS Record Separator

US Unit Separator

DEL Delete

PAD Padding Character

HOP High Octet Preset

BPH Break Permitted Here

NBH No Break Here

IND Index

NEL Next Line

SSA Start of Selected Area

ESA End of Selected Area

HTS Character Tabulation Set

HTJ Character Tabulation with

Justification

March 6,

2011
THE LANGUAGE PASCALINE

166

VTS Line Tabulation Set

PLD Partial Line Forward

PLU Partial Line Backward

RI Reverse Line Feed

SS2 Single Shift 2

SS3 Single Shift 3

DCS Device Control String

PU1 Private Use 1

PU2 Private Use 2

STS Set Transmit State

CCH Cancel Character

MW Message waiting

SPA Start of Guarded Area

EPA End of Guarded Area

SOS Start of String

SGCI Single Graphic Character

Introducer

SCI Single Character Introducer

CSI Control Sequence Introducer

ST String Terminator

OSC Operating System Command

PM Privacy Message

APC Application Program Command

NBSP No Break Space

So the sequence can appear:

óWelcome\ crô

If the underlying implementation of Pascaline is not ISO 8859-1, then the control mnemonics would be

different. In addition, there may be other control identifiers defined for a particular implementation or

character set.

óHi there\ del, georgeô

The use of character escapes causes a compatibility issue with ISO 7185 Pascal. In ISO 7185 Pascal,

the character string:

óHi there\ georgeô

Would include the backslash, whereas a Pascaline implementation would remove the backslash. For

this reason, standard complying Pascaline implementations must have a flag that enables the use of

character escapes that can be turned on or off to enable normal treatment of programs. Since ISO 7185

Pascal requires that any Pascaline implementation have an option that will restrict the input language

to strict ISO 7185, the character escape option must also be automatically set to off by the ISO 7185

compatibility flag. The reason that the character escape option should be a separate option, and not

simply tied to the ISO 7185 flag, is that it would then be impossible to have ISO 7185 complying

THE LANGUAGE PASCALINE
March 6,

2011

 167

programs work with Pascaline full language mode enabled. This would be against the rule that

Pascaline is, or can be, a completely upward compatible superset of standard ISO 7185 Pascal.

THE LANGUAGE PASCALINE
March 6,

2011

 169

F Annex F: Overview of standard libraries and modularity

In the annexes that follow, several standard libraries are introduced. The introduction of standard

libraries into a standard is based on the following two ideas:

1. Pascaline has sufficient extendibility that major new applications can be covered with

extension modules using the standard language, and not changes to the base language.

2. A typical Pascaline program is going to have library dependencies in addition to language

dependencies.

The modules in the standard set are divided into two basic types:

1. Basic extensions used by programs regardless of extra devices or capabilities available.

2. Extensions that introduce new device capabilities.

The following extension libraries will be shown in this standard:

Annex G: Service3 library - Directory lists, file name handling, paths, environment, program

execution, date and time, internationalization.

Annex H: String library - String routines, alternate base I/O, formatting.

Annex I: Math library ï Various floating point math extensions and utilities.

Annex J: Terminal library - Output to text surface, advanced input.

Annex K: Graphical library - Output to graphical surface.

Annex L: Windowing library - Management of multiple windows.

Annex M: Widget library - Buttons, lists, dialogs relevant to screen based programs.

Annex N: Sound library - Midi and wave input and output.

Annex O: network library - Network program access.

F.1 Basic Language Support

F.1.1 services

services contains a series of operating system support extensions such as filename/path handling,

directory listings, time and date, environment strings, executing other programs, and similar functions.

F.1.2 strings

Implements common string handling routines, dynamic string management, numeric conversion to and

from a string, advanced numeric formatting to and from both strings and files, string search and

replace, and similar functions.

F.2 Advanced User I/O and Presentation Management

The advanced user I/O modules are a family that implement a series of advancing levels that match

advancing levels in I/O capabilities, including:

March 6,

2011
THE LANGUAGE PASCALINE

170

Terminal character presentation

Gives the ability to place characters on a grid for a typical fixed size character display.

Graphical presentation

Gives the ability to draw figures, and place characters with proportional fonts.

Window management

Divides the display surface into a series of independent windows.

Widget placement and management

Gives a library of common controls, layered components and dialogs.

All of the supported display modes are upward compatible, and fixed size character presentation is

always available in any graphic mode. The result is that there is two possible stacking levels of

presentation:

Terminal - > Single fixed display - > Windowed display - > Widgets

Graphical - > Single fixed display - > Windowed display - > Widgets

The terminal, graphical, window management and widget libraries are a set of libraries that implement

a series of screen surface operating standards in an ascending sequence of capability:

serial I/O - I/O of single charac ters with line orientation and

| blocking on input.

+-- Terminal I/O - I/O to an X - Y fi xed font surface with arbitr ary

 | posi tioning and event driven I/O.

 +-- Graphical I/O - I/O to arbitrary pixel locations and multiple

 | figure types.

 +----- Multiple windows - I/O to multiple windows.

 +-------- Widget - Catalog of predefined widgets and dialogs

These layers are all forward and backward compatible, so that any lower level can be used in any

higher level. For example, a ISO 7185 Pascal that only inputs and outputs in terms of characters

formatted in terms of lines can be run under any level all the way up to a multiple windowing

environment with widgets without source change.

The primary method for performing this is the use of the "character grid", which shows where the cells

of screen characters exist in a graphical system. The character grid is only relevant to characters as a

figure, and not to lines or other figures, and output to the grid is the default. A program use arbitrary

character placement by explicitly specifying it, and it can turn off the automatic character wrapping

features of the grid.

Similarly, all text and graphical windows are buffered in a multiple windowing system, so that they

need not be aware of the windows management unless they wish to be.

Serial I/O is the name given here of the default method of ISO 7185 Pascal which goes back to its

origin, and includes the write, read, writeln, readln, page and similar built in procedures.

THE LANGUAGE PASCALINE
March 6,

2011

 171

Terminal I/O is so named after the terminals that were used with computers for several decades, and

for text mode still in use even in windowed operating systems.

From here, two distinct branches exist, one with, and one without graphics capability. For example, it

is possible to have both multiple windows, widgets and dialogs all while staying within the capability

of a character I/O only terminal. Therefore, there exists both a graphics version of the windows

management library and the windows library, and one of each with character only ability.

The names of the libraries, as appears in a uses or joins statement, is as follows:

Name Contents Call model

terminal Terminal I/O Terminal

graphics Graphical I/O Graphical

windows Managed windowing Terminal and

graphical

widgets Widgets and dialogs Terminal and

graphical

The serial level does not require an explicit library, since that is the normal I/O method specified in

ISO 7185 Pascal.

The key to understanding the variation in libraries is that a uses or joins of a particular library does

not necessarily lead to a completely different block of code. A system that only has graphical output

modes will implement the terminal library by aliasing that to the graphical library. It is also common

for a graphical or terminal mode library to include all of the windows management and widget/dialog

functions in the same module. Thus, a uses or joins of the windows management libraries does not

cause a specific library to linked as much as flag that the program will be using these features.

F.2.1 Naming

The functionality of the I/O modules nest, which effectively means that each of the static classes

represented by the I/O modules extend each other. Unfortunately, there is no mechanism in Pascaline

for modules to extend one another. The net effect is that when a module is referenced that is a base

class of a static module, that reference is aliased to the derived class. For example, references to calls

in terminal are rerouted to graphics, since graphics contains all of the procedures and functions of

terminal.

The aliasing of names must cover the full ability of I/O modules in Pascaline to extend other I/O

modules. This means that these combinations are possible:

Module Extended to

terminal windows

terminal widget

graphics widget

The method this is carried out is implementation specific. One typical method is to utilize interface

only modules (modules with the implementation stripped out). Each of the I/O modules has its own

interface specification, which includes a superset of the base module. This allows each module to be

fully checked against its own specification. A program that specifies terminal only sees terminal

March 6,

2011
THE LANGUAGE PASCALINE

172

definitions, a program that specifies graphics only sees graphics definitions, and so forth. At the

lowest level (assembly language or ñlinkerò level), aliases are provided for the module names, and so a

program compiled to the terminal standard can be linked to a graphics module, etc.

Note that this issue does not exist for classes, and each of the I/O modules features a series of nested

classes.

F.3 Advanced device libraries

F.3.1 sound

sound gives the ability to drive a midi output, perform sequencing, and output wave files.

F.3.2 network

network allows access to a network using the ISO 7185 Pascal file model.

F.4 Classes

Many of the standard modules expose a series of classes that gives the same functionality as the

modular version, using object based design. This only occurs where there is ñstateò that would make

sense as carried with the object. For example, terminal contains a class that holds the I/O files used to

input and output, as well as several internal states such as text colors and modes. services does not

carry state, and so classes are not useful there. This reflects the idea in Pascaline that modules are a

static version of a class.

F.5 Library procedure and function notation

For purposes of brevity, BNF notation is used to show optional constructs, and the view and

overload word-symbols have been omitted.

The construct [x] means that x is optional.

The libraries description continues the idea that program examples be compilable from the source

material. However, the parts of the interface definitions have been broken into sections by the same

name. For example, terminal contains several source modules named terminal, and the understanding

is that these are different sections of the same interface module.

THE LANGUAGE PASCALINE
March 6,

2011

 173

G Annex G: System Services Library

Services contains common operating system related tasks, including directory access, time and date,

files and paths, file attributes, environment strings, the local option character, and execution of external

programs.

G.1 Filenames and Paths

A file specification is composed of a path, name and extension:

<path><name><ext>

The exact format of a file specification changes with the operating system. The routine brknam takes

a file specification and breaks it down into its path, name and extension components. The routine

maknam does the opposite, creating a composite name from the three components. When a file

specification has no path, it means that it refers to the default path. When a file specification needs to

be printed or saved in an absolute format, with the path always specified, the fulnam routine is used to

"normalize" the file specification by filling out the complete path.

To parse file specifications from the user, the routine filchar returns a character set of all possible

characters in a filename. This can be used to get a sequence of characters from a string or file that can

constitute a file specification. Once the potential file specification has been loaded into a string, it can

be checked for validity as a file specification by validfile, and as a path by validpath.

Filenames are based on the idea that there is a set of characters that may be used for filenames in a

particular installation, and the characters outside that set are used to delimit between filenames. This

characteristic of filenames allows a program to load the filename into a string, then check itôs proper

structure using subsequent calls. The program may remove certain characters from the set of filename

characters to be able to parse command lines.

A common method used to represent filenames in command lines and other text when the characters

allowed in a filename are essentially unlimited is to quote the filename. Using this method, the

filename appears as:

ñmyfileò

or

ómyfileô

This can work together with limited character set filenames by recognizing the leading quote. If both

types of quotes are allowed, then the leading quote should match the trailing quote. Additionally, the

program should be able to recognize a ñquote imageò of the forms:

Character sequence Result

ñò Double quote ñ

óô Single quote ó

\ò Forced double quote ñ

\ô Force single quote ó

March 6,

2011
THE LANGUAGE PASCALINE

174

A robust program would recognize all of these forms.

Note that services does not contain any method to parse filenames.

If a file specification contains wildcards, this can be determined by wild. services does not define

what wildcards characters or specifiers are used, or their format. wild simply indicates that the

filename contains a wildcard specification that may result in multiple files being indicated by the same

file specification.

G.2 Predefined paths

To find common objects that a program needs, three predefined paths are provided:

Program path

Is the path that the program was executed from. This is used to find data that accompanied the

program, and system wide option files. getpgm is used to read the path.

User Path

This is the path for the current user's home directory. This is used to store options that only

apply to the current user. getusr is used to read the path.

Current Path

The default path is used to find options that apply only to the current file being worked on.

Unlike the other path types, the current path can be both read and set. Setting the current path

will set the default path used to finish incomplete file specifications. getcur is used to read the

path, and setcur is used to set it.

Note that if the system has no concept of a current path, this property is used to form full path

names from default path names in services.

G.3 Time and Date

Time is kept in two different formats in services. The first is seconds time, and the second is "clock"

time. Seconds time is literally a count of the number of seconds since a fixed reference time. Clock

time is a free running clock that ticks every 100 Microseconds.

Seconds time is returned by the time function. It is in a format called "S2000", and it is the number of

seconds relative to midnight on the morning of January 1, year 2000. This means that S2000 has a

negative value for years before 2000, and a positive value after that. S2000 time is dependent on the

representation of an linteger. This results in the following limits according to bit size:

Bits Farthest year into the past Farthest year into the future

32 1932 2068

64 1608591645726 1608591649726

Note that these times donôt account for leap years, which are less than a year of error in 32 bits in any

case. 16 bits cannot reasonably be used to represent a time, since the seconds in a year exceed the

format.

THE LANGUAGE PASCALINE
March 6,

2011

 175

This represents a reasonable range of time for 32 bits, and by the year 2068 it is likely that the time

will universally be 64 bits or better. Note that it does not matter how many bits are returned by time, so

that transition will occur seamlessly. Because 64 bits is already in excess of what is needed for

computer based timekeeping, it is likely that time in 64 or more bits will actually contain fewer bits,

despite the linteger representation.

S2000 is self-relative, meaning that times relative to the year 2000 are measured by a fixed number of

seconds. S2000 only matched UTC time once, exactly at midnight on the morning of January 1, year

2000. All times after that or before that or after that are increasingly diverge from UTC. In particular,

this means that the current time and date will not match current UTC.

There are two types of calculations that can be applied to UTC, fixed and dynamic. The fixed

calculation typically finds UTC by applying leap year corrections, then a fixed table of leap second

years. The fixed calculation will fall out of accuracy from the time that the system is released. It is

impossible for it to be otherwise, since UTC is based on astronomical observation.

The dynamic calculation relies on receiving a current table of corrections from the network or other

communications method. This is typically the same calculation as fixed time, but with a continually

updated table of leap seconds.

When an S2000 time is not available, it is customary to set it to -maxlint, which makes it clear that

the time was not set.

The time returned by time is in GMT or "universal" time. To convert to local time, the function local
is used. It takes the given GMT S2000 time, and offsets it by the local time zone offset, and by

daylight savings time, and returns the adjusted local time.

The time can be placed, in character format, to a string by times, and written to either an output file,

or the standard output file by writetime. The date can be placed, in character format, to a string by

dates, and written to either an output file, or the standard output by writedate. These procedures

format the time and date using the current internationalization settings of the host.

clock time is typically derived from a free running counter kept in the host computer, and it is

represented by lcardinal values. It may or may not be synchronized to the values returned by time.

For this reason, clock should be treated as self-relative and not compared to time in any way.

clock time is treated differently from time. Since it free runs, you must be prepared for it to "wrap",

or suddenly start counting up from zero. This can be determined by if any stored time is greater, or

later in time, than the current clock value. The function elapsed takes a reference time, and

determines how much time has passed from that, including compensation for wraparound. The exact

count at which the clock count wraps is system dependent.

The total amount of time that can be represented with clock is determined not only by the bit size of

the clock return value, but also by the size of the counter the host computer maintains. All that is

guaranteed is that clock will be able to keep a unique time for at least 24 hours.

The actual increment of time for each tick of the clock is determined by the host computer. If the host

cannot time to 100 microsecond accuracy, then the clock time will increment in multiples > 1, or

effectively a running approximation of the actual timer. For this reason, there may not be an exact time

length between successive counts of the timer.

March 6,

2011
THE LANGUAGE PASCALINE

176

G.4 Directory Structures

The list procedure takes a file specification, including wildcards, and returns a linked list of all of the

matching directory entries:

{ attributes }

attribute = (atexec, { is an executable file type }

 atarc, { has been archived since last modification }

 atsys, { is a system special file }

 atdir, { is a directory s pecial file }

 atloop); { contains heriarchy loop }

attrset = set of attribute; { attributes in a set }

{ permissions }

permission = (pmread, { may be read }

 pmwrite, { may be written }

 pmexec, { may be executed }

 pmdel, { may be deleted }

 pmvis, { may be seen in directory listings }

 pmcopy, { may be copied }

 pmren); { may be renamed/moved }

permset = set of permission; { permissions in a set }

{ standard directory format }

filptr = ^filrec; { pointer to file records }

filrec = record

 name: pstring; { name of file }

 size: lcardinal; { size of file }

 alloc: lcardinal; { allocation of file }

 attr: attrset; { attributes }

 create: linteger; { time of creation }

 modify: linteger; { time of last modification }

 access: linteger; { time of last access }

 backup: linteger; { time of last backup }

 user: permset; { user permissions }

 group: permset; { group permissions }

 other: permset; { other permissions }

 next: filptr { next entry in list }

end ;

Each directory file entry has the name of the file, along with a series of descriptive data for the file.

These are divided into attributes and permissions. An attribute is a characteristic of the file, and

THE LANGUAGE PASCALINE
March 6,

2011

 177

generally does not change. Permissions indicate what can be done with the file, and are divided into

the user, group and other permissions.

Not all attributes nor all permissions are available on every operating system. If a particular permission

or attribute is not implemented on a given operating system, then setting it will have no effect, and

reading it will always return unset.

The size of the file is its size in bytes. The allocation is the total space it occupies on the storage

medium, which may be different from its size for several reasons. The blocking may be such that the

size is rounded up to the nearest block. The operating system may have the ability to reserve space for

the file beyond what it is currently using, or may not release space back to the free space pool if the

file is truncated.

The times of interesting events in the files life are available, in "S2000" format (already discussed). If a

particular time is not available, then it is set to -maxlint.

The file structure is a collection of items that may be implemented on any given operating system. The

way to prevent the need to decide what is and what is not implemented on a particular system is to

focus on what is essential for all systems. For example, the size of a file is usually present, as well as

the last modification time. The last modification time can be used to determine when to back up files,

by comparing it to the date of the backup copy of the same file, or to the modification date of the

archive containing the file. Similarly, a "make" style program can determine when to remake a file by

looking at the modification time.

G.5 File Attributes and Permissions

The attributes of a file can be set by name with the setatr command. It takes a set of attributes and the

filename, and sets all the given attributes on the file. The routine resatr resets attributes. The user

permissions for a file are set and reset by setuper and resuper. The group permissions are set and

reset by setgper and resgper. The other permissions for a file are set and reset by setoper and

resoper.

G.6 Environment Strings

The environment is a collection of strings that is kept by the executive, and passed to programs when

they are started. Each string has a name and a value, both of which are arbitrary strings. An

environment string can be retrieved by name by getenv, and set by setenv. The entire environment

string set can be retrieved at one time by the allenv routine, which uses a linked list to represent the

environment strings:

March 6,

2011
THE LANGUAGE PASCALINE

178

{ environment strings }

envptr = ^envrec; { pointer to environment record }

envrec = packed record

 name: pstring; { name of string }

 data: pstring; { data in stri ng }

 next: envptr { next entry in list }

end ;

The standard format for environment string names is the same for Pascaline identifiers, i.e., a character

in the sequence 'A'..'Z', 'a'..'z', '_', followed by any number of characters in the sequence 'A'..'Z', 'a'..'z',

'_', '0'..'9'. The data in the string can be a series of any valid characters.

The reason for retrieving the entire environment is to pass it on to other programs in an exec

statement.

Although most available operating systems implement the environment string concept, it has fallen out

of favor in modern programs. Placing the needed configuration strings for a particular program into a

place where the executive will use it both requires special calls, and places individual program data

into a pool where it can be deleted or corrupted.

Some current systems use a repository concept where program data is kept in a central tree structured

database. This is not covered in services, and would be covered in another library.

A better method is to use a file containing the configuration information for the program in its startup

directory, then optionally another version in the user directory, and finally one in the current directory.

This allows options that affect all runs on the current machine to be kept in one file, while the options

for a particular user are kept in another file, and lastly the options in use in the current project in the

current directory. This system has the advantage that it addresses concerns in a multiuser operating

system, and allows each program to maintain its own startup data.

For systems that do not implement an environment string capability, implementations of Pascaline

commonly keep a file in the user path area that contains the strings. This is then used just for that

program, that is, the set of environment strings are kept just for the accessing program.

G.7 Executing Other Programs

An external program can be executed by exec, which takes the command line for the program,

including the program name, and all of its parameters and other options on the same line after one or

more spaces:

cmd parameter parameter... parameter

This is passed as a string to the exec routine. When programs are executed this way, the executing

program does not need to await the finish of the program, nor can it find out if the program ran

correctly. If this is required, the routine execw is used. execw will wait for the program to complete,

then place the error return for the program in a variable. This variable will be 0 if the program ran

THE LANGUAGE PASCALINE
March 6,

2011

 179

correctly, or non-zero if it didn't. The exact numerical meaning of the error is up to the program

executed.

If the system cannot execute programs in parallel, exec is equivalent to execw, but without the return

code.

If the environment is to be set for the executed program, the call exece can be used, which takes an

environment list. This allows the environment to be retrieved from the current environment or created

as new, modified or added to as needed, then passed to the executed program. execew does the same

thing, but waits for the program to finish, and returns an error code.

If a command line concept does not exist on the target system, an implementation can pass it via

another means, such as a file or environmental variable. Alternately, it could simply be ignored.

G.8 Error Return Code

Each program, when it completes, returns an error code. By convention, if the error code is 0, then no

error occurred. If the code is not 0, then an error occurred, and the meaning of the number is defined

by the application.

When a program under Pascaline exits, it returns a code that was set to 0 by default when the program

started. The procedure seterr can be used to set a non-zero code, which will be returned when the

program exits. Note that it does not cause the current program to exit, it simply sets the code that will

be returned when it does. It does not matter how the program exits, from the main program block, or a

halt statement or exception.

G.9 Creating or Removing Paths

A file path, or directory, is created by makpth, and removed by rempth. If the directory has files in

it, then it cannot be removed until all the files (and directories) under it have been removed. This

means by implication that each section of a path must be removed separately, and a tree structured

delete would have to repeatedly remove the contents of one element of the path, then remove the path

section itself, and so on.

G.10 Option Character

When parsing commands, the option character for the current operating system is found with optchr.
Services does not define the exact format of command line options. The option character is an aid to

portability.

G.11 Path Character

The path character is used to separate path components, usually directories in a tree structured file

system, within a path for the given system. It can be found with the pthchr function. services does

not define the contents, structure or meaning of a path. The path division character is an aid to

portability.

G.12 Location

The functions latitude and longitude exist to give the location of the host computer in geographic

coordinates, and return integers. The measurements are ratioed to maxint.

March 6,

2011
THE LANGUAGE PASCALINE

180

The longitude is 0 at the Prime Meridian, a line passing thought Greenwich, UK. The longitudes 0 to

maxint are east of the line (or in the future timewise), and longitudes 0 to ïmaxint are west of the

line. Thus maxint and ïmaxint meet on the opposite side of the world from Greenwich. This means

for a 32 bit integer that there is 0.0000000838190317 degrees for each step or 9.3306920025
millimeters per step.

The latitude is 0 at the equator and maxint at the north pole, and ςmaxint at the south pole.

The longitude and latitude in minutes and seconds can be found with:

program location;

var degrees_longitude: integer;

 minutes_longitude: integer;

 second_longitude: integer;

 degrees_latitude: integer;

 minutes_latitude: integer;

 seconds_latitude: integer;

 west: boolean;

 north: boolean;

begin

 degrees _longitude := round(longitude * 0. 0000000838190317) ;

 minutes _longitude := round(xlongitude mod

 11930465/198841.078518519);

 seconds _longitude := round(longitude mod

 198841/ 3314,0179753086400000);

 if degrees< 0 then west := true else west := false;

 degrees_lat itude := round(longitude *

 0. 0000000838190317);

 minutes_lat itude := round(longitude mod

 11930465/198841.078518519);

 seconds_l at itude := round(longitude mod

 198841/ 3314,0179753086400000);

 if degrees _latitude < 0 then north := false else north := true

end .

[need to correct this for ellipsoid]

The shape of the world is approximated as an ellipsoid. This means that the circumference of the earth

at the equator is a longer distance than the circumference of the earth on the prime meridian (by about

68 kilometers).

The altitude of the host in MSL or Mean Sea Level is given by altitude. It is 0 for the mean surface of

the ocean (sea level averaged over a long period of time), and maxint at 100 kilometers in height (the

altitude at which space begins). It is ïmaxint 100 kilometers in depth.

THE LANGUAGE PASCALINE
March 6,

2011

 181

The altitude of 0 (MSL) is typically defined as height above a model of the geoid, or idealized model

of the earth. This means it would have to be calculated against the latitude and longitude to find the

actual distance from true center of the earth. However, in the majority of cases it can be accepted as a

relative measurement.

The location of the host can be entered by the user or determined automatically by instrumentation

(GPS). The host could even be mobile, in which case it is possible to determine speed and direction

from the coordinates against time.

If there is no location, it is indicated by longitude equal to ïmaxint. This value of longitude is

redundant to maxint. Both longitude and latitude are considered unavailable by the value of

longitude.

Altitude is available separate from longitude and latitude. It is not available when altitude is ï

maxint.

The country of location is found with country, which gives a string corresponding to the English

name of the country. At this writing, the following countries exist, in alphabetical order:

Name # Name # Name # Name

1 Afghanistan 4 Dhekelia 131 Kyrgyzstan 196 Saint Kitts and

Nevis

2 Aland Islands 248 Djibouti 132 Laos 197 Saint Lucia

3 Albania 8 Dominica 133 Latvia 198 Saint Pierre and

Miquelon

4 Algeria 12 Dominican

Republic

134 Lebanon 199 Saint Vincent and

the Grenadines

5 American Samoa 16 Ecuador 135 Lesotho 200 Samoa

6 Andorra 20 Egypt 136 Liberia 201 San Marino

7 Angola 24 El Salvador 137 Libya 202 Sao Tome and

Principe

8 Anguilla 660 Equatorial

Guinea

138 Liechtenstein 203 Saudi Arabia

9 Antarctica 10 Eritrea 139 Lithuania 204 Senegal

10 Antigua and

Barbuda

28 Estonia 140 Luxembourg 205 Serbia and

Montenegro

11 Argentina 32 Ethiopia 141 Macau 206 Seychelles

12 Armenia 51 Europa Island 142 Macedonia 207 Sierra Leone

13 Aruba 533 Falkland Islands

(Islas Malvinas)

143 Madagascar 208 Singapore

14 Faroe Islands 144 Malawi 209 Slovakia

15 Australia 36 Fiji 145 Malaysia 210 Slovenia

16 Austria 40 Finland 146 Maldives 211 Solomon Islands

17 Azerbaijan 31 France 147 Mali 212 Somalia

18 Bahamas, The 44 French Guiana 148 Malta 213 South Africa

19 Bahrain 48 French

Polynesia

149 Marshall Islands 214 South Georgia

and the South

Sandwich Islands

March 6,

2011
THE LANGUAGE PASCALINE

182

20 Bangladesh 85 French Southern

and Antarctic

Lands

150 Martinique 215 Spain

21 Barbados 86 Gabon 151 Mauritania 216 Spratly Islands

22 Bassas da India 87 Gambia, The 152 Mauritius 217 Sri Lanka

23 Belarus 88 Gaza Strip 153 Mayotte 218 Sudan

24 Belgium 89 Georgia 154 Mexico 219 Suriname

25 Belize 90 Germany 155 Micronesia,

Federated States

of

220 Svalbard

26 Benin 91 Ghana 156 Moldova 221 Swaziland

27 Bermuda 92 Gibraltar 157 Monaco 222 Sweden

28 Bhutan 93 Glorioso Islands 158 Mongolia 223 Switzerland

29 Bolivia 94 Greece 159 Montserrat 224 Syria

30 Bosnia and

Herzegovina

95 Greenland 160 Morocco 225 Taiwan

31 Botswana 96 Grenada 161 Mozambique 226 Tajikistan

32 Bouvet Island 97 Guadeloupe 162 Namibia 227 Tanzania

33 Brazil 98 Guam 163 Nauru 228 Thailand

34 British Indian

Ocean Territory

99 Guatemala 164 Navassa Island 229 Timor-Leste

35 British Virgin

Islands

100 Guernsey 165 Nepal 230 Togo

36 Brunei 101 Guinea 166 Netherlands 231 Tokelau

37 Bulgaria 102 Guinea-Bissau 167 Netherlands

Antilles

232 Tonga

38 Burkina Faso 103 Guyana 168 New Caledonia 233 Trinidad and

Tobago

39 Burma 104 Haiti 169 New Zealand 234 Tromelin Island

40 Burundi 105 Heard Island

and McDonald

Islands

170 Nicaragua 235 Tunisia

41 Cambodia 106 Holy See

(Vatican City)

171 Niger 236 Turkey

42 Cameroon 107 Honduras 172 Nigeria 237 Turkmenistan

43 Canada 108 Hong Kong 173 Niue 238 Turks and Caicos

Islands

44 Cape Verde 109 Hungary 174 Norfolk Island 239 Tuvalu

45 Cayman Islands 110 Iceland 175 Northern Mariana

Islands

240 Uganda

46 Central African

Republic

111 India 176 Norway 241 Ukraine

47 Chad 112 Indonesia 177 Oman 242 United Arab

Emirates

48 Chile 113 Iran 178 Pakistan 243 United Kingdom

49 China 114 Iraq 179 Palau 244 United States

THE LANGUAGE PASCALINE
March 6,

2011

 183

50 Christmas Island 115 Ireland 180 Panama 245 Uruguay

51 Clipperton Island 116 Isle of Man 181 Papua New

Guinea

246 Uzbekistan

52 Cocos (Keeling)

Islands

117 Israel 182 Paracel Islands 247 Vanuatu

53 Colombia 118 Italy 183 Paraguay 248 Venezuela

54 Comoros 119 Jamaica 184 Peru 249 Vietnam

55 Congo,

Democratic

Republic of the

120 Jan Mayen 185 Philippines 250 Virgin Islands

56 Congo, Republic

of the

121 Japan 186 Pitcairn Islands 251 Wake Island

57 Cook Islands 122 Jersey 187 Poland 252 Wallis and Futuna

58 Coral Sea Islands 123 Jordan 188 Portugal 253 West Bank

59 Costa Rica 124 Juan de Nova

Island

189 Puerto Rico 254 Western Sahara

60 Cote d'Ivoire 125 Kazakhstan 190 Qatar 255 Yemen

61 Croatia 126 Kenya 191 Reunion 256 Zambia

62 Cuba 127 Kiribati 192 Romania 257 Zimbabwe

63 Cyprus 128 Korea, North 193 Russia

64 Czech Republic 129 Korea, South 194 Rwanda

65 Denmark 130 Kuwait 195 Saint Helena

If the country is not set, an empty string (not a nil string) is returned.

The ordinal number of the country is given by countryord, which returns the number of the language

from the table above. These ordinal numbers are given by the standard ISO 3166-1.

The current time zone, is given by timezone. It gives hours in the range of -12 to +14, which indicate

the offset in hours from GMT or Greenwich Mean Time. The function daylightsav is true if daylight

savings is in effect in the current host location.

If 24 hour time is used in the current host location, the function time24hour will return true,

otherwise false. The accepted format for 24 hour time is with hours from 0 to 23.

Both the current time zone and daylight savings time are factored into the calculation of local, and

that is the preferred method to find local time.

G.13 Internationalization

The current language in use on the host count be found with language, which gives a string

corresponding to the English name of the language. The languages used are according to the ISO 639-

1 standard:

March 6,

2011
THE LANGUAGE PASCALINE

184

Name # Name # Name # Name

1 Afan 36 French 71 Lithuanian 106 Siswati

2 Abkhazian 37 Frisian 72 Macedonian 107 Slovak

3 Afar 38 Galician 73 Malagasy 108 Slovenian

4 Afrikaans 39 Georgian 74 Malay 109 Somali

5 Albanian 40 German 75 Malayalam 110 Spanish

6 Amharic 41 Greek 76 Maltese 111 Sudanese

7 Arabic 42 Greenlandic 77 Maori 112 Swahili

8 Armenian 43 Guarani 78 Marathi 113 Swedish

9 Assamese 44 Gujarati 79 Moldavian 114 Tagalog

0 Aymara 45 Hausa 80 Mongolian 115 Tajik

11 Azerbaijani 46 Hebrew 81 Nauru 116 Tamil

12 Bashkir 47 Hindi 82 Nepali 117 Tatar

13 Basque 48 Hungarian 83 Norwegian 118 Tegulu

14 Bengali 49 Icelandic 84 Occitan 119 Thai

15 Bhutani 50 Indonesian 85 Oriya 120 Tibetan

16 Bihari 51 Interlingua 86 Pashto 121 Tigrinya

17 Bislama 52 Interlingue 87 Persian 122 Tonga

18 Breton 53 Inupiak 88 Polish 123 Tsonga

19 Bulgarian 54 Inuktitut 89 Portuguese 124 Turkish

20 Burmese 55 Irish 90 Punjabi 125 Turkmen

21 Byelorussian 56 Italian 91 Quechua 126 Twi

22 Cambodian 57 Japanese 92 Rhaeto-Romance 127 Uigur

23 Catalan 58 Javanese 93 Romanian 128 Ukrainian

24 Chinese 59 Kannada 94 Russian 129 Urdu

25 Corsican 60 Kashmiri 95 Samoan 130 Uzbek

26 Croatian 61 Kazakh 96 Sangro 131 Vietnamese

27 Czech 62 Kinyarwanda 97 Sanskrit 132 Volapuk

28 Danish 63 Kirghiz 98 ScotsGaelic 133 Welch

29 Dutch 64 Kirundi 99 Serbian 134 Wolof

30 English 65 Korean 100 Serbo-Croatian 135 Xhosa

31 Esperanto 66 Kurdish 101 Sesotho 136 Yiddish

32 Estonian 67 Laothian 102 Setswana 137 Yoruba

33 Faeroese 68 Latin 103 Shona 138 Zhuang

34 Fiji 69 Latvian 104 Sindhi 139 Zulu

35 Finnish 70 Lingala 105 Singhalese

The ordinal number of the language is given by languageord, which returns the number of the

language from the table above. Note that even if the languages are added to or subtracted to in future

implementations, the ordinal numbers will not be changed, simply extended at the end, with any

removed entries set to an empty string.

The decimal point character in use can be found with decimal. The current number separator in use is

defined with numberseparator.

THE LANGUAGE PASCALINE
March 6,

2011

 185

The time and date formats can be derived the country of the host. The main difference between formats

is the order of the elements in time and date. The functions timeorder and dateorder give the

ordering:

dateorder Code Date format

1 year-month-day (ISO 8601 standard format)

2 year-day-month

3 month-day-year

4 month-year-day

5 day-month-year

6 day-year-month

timeorder Code Time format

1 Hour:minute:second (ISO 8601 standard format.

2 Hour:second:minute

3 Minute:hour:second

4 Minute:second:hour

5 Second:hour:minute

6 Second:minute:hour

The separator character for fields in the date is given by dateseparator, which is ó-ó in ISO 8601

date formats. The separator character for fields in time is given by timeseparator, which is ó:ô in ISO
8601 time formats.

The number of digits in each section of the time and date formats is:

Section Digits

Year 4

Month 2

Day 2

Hour 2

Minute 2

Second 2

If the time and date format is not set, it defaults to the ISO 8601 standard for time and date formatting.

This is the correct format for output that can be read across international boundaries.

Note that the procedures times, dates, writetime and writedate automatically use the

internationalization settings of the host to arrive at the host computers natural time and date formatting.

The symbol for the currency used in the country of host is given by currencychr.

G.14 Exceptions

The following exceptions are generated in services:

March 6,

2011
THE LANGUAGE PASCALINE

186

Identifier Meaning

NameTooLong The filename passed was too long for a services

internal buffer.

FileSizeTooLarge The file(s) being processed were too large.

StringNil The string passed was nil.

StringTooSmallForTime The string result buffer was too small to hold the

time.

StringTooSmallForDate The string result buffer was too small to hold the

date.

EnvironmentStringTooLarge A system environment string was too large for a

services buffer.

CommandStringEmpty The command string passed was empty.

ProgramNotFound External program not found.

CurrentPathTooLong Current path is too long for a services buffer.

FilenameStringEmpty The filename passed was empty.

CannotDetermineProgramPath The program path could not be determined.

Services establishes a series of exception handlers for each of the above exceptions during startup.

Exceptions not handled by a client program of services will go back to services, then print a

message specific to the error, then the general exception will be thrown.

Not all procedures and functions throw all exceptions. See each procedure or function description for a

list of exceptions thrown. A client of services need only capture the exceptions occurring in the

procedure or function that is called.

THE LANGUAGE PASCALINE
March 6,

2011

 187

G.15 Functions and procedures in services

For all of the following calls, where an output file is used, it can be left off. The result is to default to

the standard output file.

procedure list(fn: [p]string; var l: filptr);

Form a file list from the filename fn, and return in the file entry list l. The filename fn may

contain wildcards, and may be fully pathed, or refer to the current directory. If no files are

found, then the list pointer is returned nil.

Exceptions: FileSizeTooLarge, StringNil

procedure times(var s: string; t: linteger);

function times(t: linteger): pstring;

Place time from S2000 time t in string s.

Exceptions: StringTooSmallForTime

procedure dates(var s: string; t: linteger);

function dates(t: linteger): pstring;

Place date from S2000 time t in string s.

Exceptions: StringTooSmallForDate

procedure writetime([var f: text;] t: linteger);

Write time from S2000 time t to text file f, or by default, the standard output file.

Exceptions: None

procedure writedate([var f: text;] t: linteger);

Write date from S2000 time t to text file f, or by default, the standard output file.

Exceptions: None

function time: linteger;

Returns current S2000 time in GMT

Exceptions: None

March 6,

2011
THE LANGUAGE PASCALINE

188

function local(t: linteger): linteger;

Converts the given GMT S2000 time t to local time, using the time zone offset and daylight

savings status in the host computer, and returns the result.

Exceptions: None

function clock: lcardinal;

Returns 100 microsecond, free running time.

Exceptions: None

function elapsed(r: lcardinal): lcardinal;

Given a stored clock time r, will check the current clock time and find the total number of

100 microsecond ticks since the given time, then return that. Accounts for timer wraparound.

Exceptions: None

function validfile(s: [p]string): boolean;

Parses and checks the file specification s for a valid filename on the current system. Returns

true if valid.

Exceptions: StringNil

function validpath(s: [p]string): boolean;

Parses and checks the file specification s for a valid path on the current system. Returns true if

valid, otherwise false.

Exceptions: StringNil

function wild(s: [p]string): boolean;

Checks if the file specification s contains wildcards. Returns true if so, otherwise false.

Exceptions: StringNil

THE LANGUAGE PASCALINE
March 6,

2011

 189

procedure getenv(ls: string; var ds: string);

function getenv(ls: string): pstring;

Finds and returns an environment string. ls contains the name of the string to look up, ds or

the return value contains the resulting string as found. If there is no environment string by that

name, the return is either all blanks, or nil.

Exceptions: EnvironmentStringTooLarge

procedure setenv(sn: [p]string; sd: [p]string);

Finds and sets an environment string. sn contains the string name to set, and sd contains the

contents to set it to. If there is no string by that name, it is created, otherwise the old string is

replaced.

Exceptions: StringNil

procedure allenv(var el: envptr);

Returns a complete list of the strings in the environment to el.

Exceptions: None

procedure remenv(sn: [p]string);

Remove a string sn from the environment. The string is found by name, and removed from the

environment. No error results if the string does not exist.

Exceptions: StringNil

procedure exec(cmd: [p]string);

Execute external program, with parameters, from the string cmd. Does not wait for the

program to finish, and cannot detect if it finished with an error.

Exceptions: CommandStringEmpty, ProgramNotFound, StringNil

procedure exece(cmd: [p]string; el: envptr);

Execute external program, with parameters from the string cmd and full environment. The

environment is passed as a list in el. Does not wait for the program to finish, and cannot detect

if it finished with an error.

Exceptions: CommandStringEmpty, ProgramNotFound, StringNil

March 6,

2011
THE LANGUAGE PASCALINE

190

procedure execw(cmd: [p]string; var e: integer);

Execute external program, with parameters from the string cmd. Waits for the program to

finish, and returns its error code in e. The error code is 0 for no error, otherwise the error is a

code specified by the program executed.

Exceptions: CommandStringEmpty, ProgramNotFound, StringNil

procedure execew(cmd: [p]string; el: envptr; var e: integer);

Execute external program, with parameters from the string cmd and full environment. The

environment is passed as a list in el. Waits for the program to finish, and returns its error code

in e. The error code is 0 for no error, otherwise the error is a code specified by the program

executed.

Exceptions: CommandStringEmpty, ProgramNotFound, StringNil

procedure getcur(var fn: string);

function getcur: pstring;

Get current path to fn or the result. Returns the current directory path.

Exceptions: CurrentPathTooLong

procedure setcur(fn: [p]string);

Set current path from string fn. Sets the default path for all file specifications.

Exceptions: StringNil

procedure getpgm(var s: string);

function getpgm: pstring;

Get the program path to s or returns it. Returns the program path, which is the path the

program running was loaded from.

Exceptions: CannotDetermineProgramPath

procedure getusr(var fn: string);

function getusr: pstring;

Get user path to fn or returns it. Return the user path, which is a path specific to each user.

Exceptions: None

THE LANGUAGE PASCALINE
March 6,

2011

 191

procedure brknam(fn: [p]string; var p, n, e: [p]string);

Break down file specification. Breaks the file specification fn down into path p, name n, and

extension e. Note that any one of the resulting components could be blank, if it does not exist

in the name.

Exceptions: FilenameStringEmpty, StringNil

procedure maknam(var fn: string; view p, n, e: string);

function maknam(p: [p]string; n: [p]string; e: [p]string): pstring;

Create file specification from components. Creates file specification fn from path p, name n,

and extension e. Components may be blank, but the path and the name cannot both be blank.

Exceptions: NameTooLong, StringNil

procedure fulnam(var fn: string);

function fulnam(fn: string): pstring;

Create full file specification from a partial file specification fn. Given a file specification with

an incomplete path (either by using the default path, or mnemonic shortcuts for things like

parent directory), creates a fully pathed name of standard form. This can "normalize" file

specifications, for comparisons, and to store the complete path for the file. The fully pathed

result is returned in fn or as the function result.

Exceptions: None

procedure setatr(fn: [p]string; a: attrset);

Set attributes. Given a file by name fn, the attributes in the set a are set true for the file.

Exceptions: StringNil

procedure resatr(fn: [p]string; a: attrset);

Reset attributes. Given a file by name fn, the attributes in the set a are set false for the file.

Exceptions: StringNil

March 6,

2011
THE LANGUAGE PASCALINE

192

procedure bakupd(fn: [p]string);

Set backup time current. Given a file by name fn, sets the backup time for the file as current.

Backup programs should also reset the archive bit to show that backup has occurred.

Exceptions: StringNil

procedure setuper(fn: [p]string; p: permset);

Set user permissions. Given a file by name fn, the permissions in the set p are set true for the

file.

Exceptions: StringNil

procedure resuper(fn: [p]string; p: permset);

Reset user permissions. Given a file by name fn, the permissions in the set p are set false for

the file.

Exceptions: StringNil

procedure setgper(fn: [p]string; p: permset);

Set group permissions. Given a file by name fn, the permissions in the set p are set true for the

file.

Exceptions: StringNil

procedure resgper(fn: [p]string; p: permset);

Reset group permissions. Given a file by name fn, the permissions in the set p are set false for

the file.

Exceptions: StringNil

procedure setoper(fn: [p]string; p: permset);

Set other permissions. Given a file by name fn, the permissions in the set p are set true for the

file.

Exceptions: StringNil

THE LANGUAGE PASCALINE
March 6,

2011

 193

procedure resoper(fn: [p]string; p: permset);

Reset group permissions. Given a file by name fn, the permissions in the set p are set false for

the file.

Exceptions: StringNil

procedure seterr(e: integer);

Set program return error e. The error code returned by the current program is set. This has no

effect until the program exits.

Exceptions: None

procedure makpth(fn: [p]string);

Make path using fn. Creates a new path or directory. If the path already exists, it's an error.

Exceptions: StringNil

procedure rempth(fn: [p]string);

Remove path fn. Removes a path, or directory. The directory must exist, and must be empty of

any files or other directories, or an error results.

Exceptions: StringNil

procedure filchr(var fc: chrset);

Returns the set of valid filename characters in fc.

Exceptions: None

March 6,

2011
THE LANGUAGE PASCALINE

194

function optchr: char;

Find the option character. Returns the character that is used to introduce options in command

liens on the current system.

Exceptions: None

function pthchr: char;

Returns the character used to separate components in a path in the current system.

Exceptions: None

THE LANGUAGE PASCALINE
March 6,

2011

 195

H Annex H: String Library

The string library implements various useful string functions. Strings are built out of arrays of

characters in Pascal, and extended in Pascaline. strings unifies two schemes. The first is the space

padded right scheme familiar from ISO 7185 Pascal. The second is dynamic strings.

Dynamic strings are almost the ideal string type. They are unlimited in length, they can be returned

from a function. And because their storage is recycled, they are space efficient. They can also be fairly

speed efficient by managing when and if they are recycled.

The system declarations for padded or fixed, and dynamic strings appear as:

type string = packed array of char;

 pstring = ^string;

The string functions are often overloaded so that they take both types of strings.

H.1 Conventions

In some cases, it is ambiguous whether a padded or dynamic string argument is meant. For example,

the string compare facility does not know which type its operands are, and it makes a difference to the

result, since length plays a part in string comparison. For these situations, a "p" (for padded) is

appended to the name of the procedure or function.

Many functions and procedures must know if case matters. For example, string compare can be with

case, or caseless. For these procedures and functions, there is appended a "c" to the ones that case does

matter.

A few functions and procedures perform different actions on strings vs. characters. For the string

versions, an "s" is appended to the name.

H.2 Words

Some of the functions and procedures treat the strings as a series of words. Words are a series of non-

space characters surrounded by one or more spaces. For example:

 ó hi there George ó

Has three words, 'hi', 'there', and 'george'. Such words can be counted, indexed and extracted.

H.3 Format Strings

Some routines accept a "format string" to output numbers with. The format is an ñimageò of the output

string the number is converted into. The string will contain a series of format characters. The entire

format string is copied to the result string, but the special format characters are replaced with parts of

the number to be converted.

The number ñimageò contained within the format string consists of any number of contiguous

characters from the set [ó9ô, ó0ô, ô-ó, ó+ô, ó$ô, ó&ô ó%ô,ô,ó]. Any number of other characters can appear

before the image, and any number of other characters can follow it.

March 6,

2011
THE LANGUAGE PASCALINE

196

The first thing the format routines do is match the format to the number for decimal point position. For

example:

 +999,999.999 Format characters

 50.12 Actual number (without leading or trailing

 zeros)

Then, the meaning of each format character depends on if that character appears to the left or to the

right of the decimal point, and if there are non-zero digits more significant (if to the left of the decimal

point) or non-zero digits less significant (if to the right of the decimal point).

If a decimal point is seen, and one has already appeared in the current number image, it is an error.

Each format character operates on the digit that matches itôs position within the actual number after

decimal point alignment.

The format characters are:

9

Represents a digit. To the left of the decimal point, this is replaced with its matching digit

from the number. If there is no digit in the number at that position, and no more significant

non-zero digit, a space replaces the format character. To the right of the decimal point, if there

is no digit at that position, and no less significant non-zero digit, a space replaces the format

character.

0

As "9" above, but "0" replaces the digit if no significant digit is found, instead of space when

to the left of the decimal point. To the right of the decimal point, if the digit position is non-

zero, then it replaces the format character, otherwise remains 0.

-

Represents the sign. To the left of the decimal point, if the number is negative, it is left alone.

If the number is positive, it is replaced by a space. If the sign was already output, then it is

replaced by space. If this appears to the right of the decimal point, it terminates the image.

+

As "-", but "+" appears instead of space on a positive number.

$, &, %

These characters are used to indicate if the number is hex (or USA dollars), octal or binary. To

the left of the decimal point, if a significant digit can be matched to this position, the digit is

output, otherwise, either the format character, or a space is placed. A space is placed if any of

the format characters ó$ô, ó&ô, or ó%ô have already appeared. It is an error if this format

character is used to the right of the decimal point.

THE LANGUAGE PASCALINE
March 6,

2011

 197

,

To the left of the decimal point, if the comma appears to the right of any non-zero significant

digits, it is output as is. Otherwise, it is either replaced by space. If a "$", "&" or "%" character

appears to the left of it, the format character will appear. It is an error if this format character is

used to the right of the decimal point.

.

May only appear on real numbers. This format character is always printed, but specifies where

the mantissa of a number appears, and where its fraction appears. The appearance of the decimal

point will enable or disable the fraction. If present, fractional digits are output, otherwise, the

fraction is discarded.

H.4 Recycling

By default, strings leaves it up to the programmer to determine when dynamic strings should be

recycled. To keep from losing space ("memory leaks"), the program must be careful to keep track of

all dynamic strings created, and return them to free storage via dispose.

strings can use a nested blocking system to automatically dispose of strings for you. The

openstring call begins a new string block, and closestring ends it. When a new block is opened,

any dynamic strings allocated are recorded in the block. Then, each of them are disposed of when the

block ends. Any number of block levels can exist. With no blocks in effect, the automatic recycling

system is off, which is the state strings starts in. When all blocks are closed, strings reverts to this

state. Because the dynamic strings are returned as a group, this system can be more efficient than

returning the strings one at a time.

Use exportstring to completely remove a given dynamic string from the automated recycling

system. The upstring call takes a string, and moves it to the surrounding string block.

The strings block system has nothing to do with blocks in Pascal. strings blocks can cross blocks,

functions and even whole modules of Pascal. The two are entirely unrelated.

H.5 String container classes

The functionality of the strings library is available in a stringc class:

March 6,

2011
THE LANGUAGE PASCALINE

198

module strings;

class stringc (l: integer) ;

type stringcr: reference to stringc;

var val(l): string;

procedure lcases; begin end;

procedure ucases; begin end;

procedure clears; begin end;

fun ction len : integer;

overload procedure len(newlen: integer);

procedure copy(s: pstring);

overload procedure copy(var s: string);

overload procedure copy(var s: stringc);

overload procedure copy(s: stringcr);

operator := (s: string);

operator := (s: pstring);

operator := (s: stringc);

operator := (s: stringcr);

operator := (sd: string; ss: stringc);

operator := (sd: pstring; ss: stringc);

operator := (sd: string; ss: stringcr);

operator := (sd: pstring; ss: stringcr);

procedure cat(s: string);

procedure cat(s: pstring

procedure cat(var s: stringc);

procedure cat(s: stringcr);

operator + (s: string): stringcr ;

opera tor + (s: pstring): stringcr;

operator + (var s: stringc);

operator + (s: stringcr);

function comp[c]p(s : string): boolean;

function comp[c]p(s: pstring): boolean;

function comp[c]p(s:[p]string): boolean;

function comp[c]p(s:[p]string): boolean;

function comp[c]p(s:[p]string): boolean;

function gtr[c]p(s : [p] string): boolean;

operator > (s : [p] string): boolean;

operator < (s : [p] string): boolean;

operator = (s : [p]string): boolean;

THE LANGUAGE PASCALINE
March 6,

2011

 199

operator >= (s: [p]pstring): boolean;

operator <= (s: [p]strin g): boolean;

function index[c]p(s : [p] string): integer;

procedure ex tract(l, r: integer);

procedure insert(s: string; p: integer);

procedure rep(s:string; r: integer);

operator * (r: integer) : stringcr;

procedur e trim ;

function words : integer;

procedure ex twords(l, r: integer);

procedure reads([f: text][var ovf: boolean]);

procedure ints(i: integer [; fl: integer] | [fmt: string]);

procedure reals(r: real [; f: integer] | [; fl: integer; fr:

integer] | [; fmt: string]);

procedure reales(r : real [; fl: integer]);

procedure hexs(w: lcardinal [; fl: integer]);

procedure octs(w: lcardinal [; fl: integer]);

procedure bins(w: lcardinal [; fl: integer]);

function intv][(var ovf: boolean)] : integer;

function hexv [(var ovf: boolean)] : lcardinal;

function octv [(var ovf: boolean)] : lcardinal;

function binv [(var ovf: boolean])] : lcardinal;

function realv : real;

procedure subst[c][all](s: [p]string; r: [p]string);

.

begin ! strings

end.

H.6 Exceptions

The following exceptions are generated in strings:

March 6,

2011
THE LANGUAGE PASCALINE

200

Identifier Meaning

NoStringBlock No string block is active.

OuterBlockFull No room in outermost string block.

CurrentBlockFull Current string block is full.

StringNil String passed is nil.

StringDestinationOverflow String was to large for destination.

IndexOutOfRange String index out of range.

NegativeRepeatCount Repeat count was negative.

WordIndexOutOfRange Word array index was out of range.

StringReadOverflow String was too large to read.

FormatTooLarge Format is too large for destination

InvalidFieldSpecification Field specified is invalid

NegativeValueNondecimal Radix was negative

NumberOverflowsFormat Number overflows space provided in format

string.

NegativeNotPlaced Negative sign not placed in format.

InvalidRealNumber Invalid real number.

InvalidFractionSpecification Invalid fraction specification.

InvalidRadix Invalid radix

InvalidIntegerFormat Invalid integer format.

NumberTooLarge Number too large.

IntegerTooLarge Integer too large.

InvalidRealFormat Invalid real format.

strings establishes a series of exception handlers for each of the above exceptions during startup.

Exceptions not handled by a client program of strings will go back to strings, then print a message

specific to the error, then the general exception will be thrown.

Not all procedures and functions throw all exceptions. See each procedure or function description for a

list of exceptions thrown. A client of strings need only capture the exceptions occurring in the

procedure or function that is called.

H.7 Procedures and functions in strings

For each call that uses a file for input or output, the file can be left off. The default is the standard

input or output file, accordingly.

function lcase(c: char): char;

function lcase(s: pstring): pstring;

function lcases(s: string): pstring;

procedure lcases(s: string);

Finds the lower case version of a character c or string s. This is either returned, or converted

in place.

Exceptions: StringNil

THE LANGUAGE PASCALINE
March 6,

2011

 201

function ucase(c: char): char;

function ucase(s: pstring): pstring;

function ucases(s: string): pstring;

procedure ucases(s: string);

Finds the upper case version of a character c or string s. This is either returned, or converted

in place.

Exceptions: StringNil

procedure clears(var s: string);

Clears string s to all spaces. To set an entire string to another character value besides space,

use rep below.

Exceptions: None

function len(s: [p]string): integer;

Finds the padded length of a string s. This is equivalent to the index of the last non-space

character, or zero if there is none. Note that dynamic string lengths are found via the system

function max.

Exceptions: StringNil

procedure copy(var d: string; s: [p]string);

function copy(s: [p]string): pstring;

procedure copy(var d: pstring; s: string);

operator := (var d: string; s: pstring);

operator := (var d: pstring; s: string);

Create a copy of the source s string in the destination d or returns it as a result. If the

destination is a fixed string, then it will be padded on the right with spaces to fill it out. If the

destination or return type is dynamic, then a new string will be created of the same length as

the source, and the source copied to that. In the case of the last procedure, the source is taken

to be a padded string, and the length is without padding. This procedure is used to copy from a

padded string to a dynamic string.

Note that the assignment operator := is defined in the case of string to string assignment as to

copy the contents of the strings if the strings are of equal length, and it is an error if they are

not of the same length. In the case of pstring to pstring, ISO 7185 defines only the pointer to

be copied. Thus, both the source and destination will simply point to the same string.

Exceptions: StringNil, StringDestinationOverflow, CurrentBlockFull

March 6,

2011
THE LANGUAGE PASCALINE

202

procedure cat(var d: string; s: string);

function cat(sa: [p]string; sb:[p]string): pstring;

operator + (sa: [p]string; sb:[p]string): pstring;

Concatenate two strings d and s, or sa and sb. For the first procedure, the padded destination

and source are concatenated into the padded destination. The function concatenates unpadded

strings to a dynamic result.

When concatenating two padded strings, it is not possible using cat to concatenate with a space

or spaces between strings. For this case, use a padded string insert instead, with the source

string inserted after the desired number of spaces.

Exceptions: StringNil, StringDestinationOverflow, CurrentBlockFull

function comp[c](sa: [p]string; sb: [p]string): boolean;

function comp[c]p(sa, sb:string): boolean;

Compare strings sa and sb. Returns true if the strings are equal. Compares case or caseless,

and padded or fixed length. Strings are equal only if they have the same length and content.

Note that the overload equals and not equals version of copy cannot be used with a ISO 7185

Pascal string, since those operators are already defined.

Exceptions: StringNil

function gtr[c](sa: [p]string; sb: [p]string): boolean;

function gtr[c]p(sa, sb:string): boolean;

Compare string sb is greater than string sa. Returns true if the second string is greater than

the first. Compares case or caseless, and padded or fixed length. Strings are compared from

left to right, until the first difference is found. Then, the second string is greater than the first if

the ord of its character is greater than the first. In case one string is longer than the other, but

otherwise equal, the shorter string is less than the longer string.

This function can be used to find less than, greater than or equal, and less than or equal by

arranging the operands:

gtr(a, b) a < b

gtr(b, a) a > b

not gtr(a, b) a >= b

not gtr(b, a) a <= b

Exceptions: StringNil

THE LANGUAGE PASCALINE
March 6,

2011

 203

operator > (sa: string; sb: pstring): boolean;

operator > (sa: pstring; sb: string): boolean;

operator > (sa: ptring; sb: pstring): boolean;

operator < (sa: string; sb: pstring): boolean;

operator < (sa: pstring; sb: string): boolean;

operator < (sa: ptring; sb: pstring): boolean;

operator = (sa: string; sb: pstring): boolean;

operator = (sa: pstring; sb: string): boolean;

operator = (sa: ptring; sb: pstring): boolean;

operator >= (sa: string; sb: pstring): boolean;

operator >= (sa: pstring; sb: string): boolean;

operator > =(sa: ptring; sb: pstring): boolean;

operator <= (sa: string; sb: pstring): boolean;

operator <= (sa: pstring; sb: string): boolean;

operator <= (sa: ptring; sb: pstring): boolean;

Finds string greater than, less than, equals, not equals, greater or equals, and less than or equals

for any combination of pstring with string, or between two pstrings. The comparision is always

considering the case of the string characters. The length of the strings is according the absolute

length of the strings without considering padding.

For equals, two strings are equal if they have the same characters at the same positions, and if

they are the same length.

For other relations, the strings are examined character by character until a difference is found,

or the end of both strings is reached. If a difference is found, the ordering of the character

found to be different determines the result. If the strings are found to be different lengths, the

longer string is greater than the shorter one.

Note that the operators for ISO 7185 Pascal strings are defined within the ISO 7185 standard,

and only allow strings of the same length to be compared. Only in the above functions is the

length rule relaxed to allow strings of different lengths to be compared.

If a comparison is needed that does not consider case, or uses the padded length definition of

strings is needed, use the comp and gtr functions listed above.

Exceptions: StringNil

function index[c](sa: [p]string; sb: [p]string): integer;

function index[c]p(sa, sb:string): integer;

Finds the incidence of the source string sb in the string sa. If the source string is found within

the destination, the index of its first character is returned, otherwise 0. The comparison may be

case or caseless. The padded version is for when the source string is padded.

Exceptions: StringNil

March 6,

2011
THE LANGUAGE PASCALINE

204

procedure extract(var d: string; s: string; l, r: integer);

function extract(s: [p]string; l, r: integer): pstring;

Extract a substring. The source string s from the left index to the right index is extracted, and

either placed in the destination d, or returned. It is an error if either index is out of range, but

indexes l > r simply result in a null string. If the result is too large for the destination, an error

results. The procedure version is for padded strings.

Common equivalents using extract are:

right(s,l) extract(s, max(s) - l+1,max(s)) Get right string

left(s, l) extr act(s,1,l) Get left string

mid(s,l,r) extract(s, l,l+r - 1) Get mid string

Exceptions: StringNil, StringDestinationOverflow, IndexOutOfRange,
CurrentBlockFull

procedure insert(var d: string; s: string; p: integer);

function insert(sa:[p]string; sb: [p]string; p: integer): pstring;

Inserts a substring from the source s into the destination d. The procedure version is for

padded strings. If the source string is too long for the destination, an error results.

Exceptions: StringNil, StringDestinationOverflow, IndexOutOfRange,
CurrentBlockFull

function rep(s: [p]string; r: integer): pstring;

procedure rep(var d: string; s:string; r: integer);

operator * (var d: string; s:string; r: integer);

Repeats the source string s r times into the destination d or the return string. The procedure

version is for padded strings. If the resulting string is too long for the destination, an error

results.

Exceptions: StringNil, StringDestinationOverflow, NegativeRepeatCount,
CurrentBlockFull

function trim(s: [p]string): pstring;

procedure trim(var d: string; s: string);

Trim leading and trailing spaces from string s. and returns the result in string d or the result

The procedure version is for padded strings. For padded strings, only the leading spaces are

affected.

Exceptions: StringNil, StringDestinationOverflow, IndexOutOfRange,
CurrentBlockFull

THE LANGUAGE PASCALINE
March 6,

2011

 205

function words(s: [p]string): integer;

Returns a count of the number of space delimited words in the string s.

Exceptions: StringNil, WordIndexOutOfRange

function extwords(s: [p]string; l, r: integer): pstring;

procedure extwords(var d: string; s: string; l, r: integer);

Extracts the space delimited words from the string s, between the left to the right indicies

inclusive. Returns the result in d or as the result.

Exceptions: StringNil, StringDestinationOverflow, WordIndexOutOfRange,
CurrentBlockFull

procedure reads([f: text;] var s: [p]string [; var ovf: boolean]);

Reads a line to string s from text file f. The versions of this procedure that have an ovf flag

return it true if the input line overflowed the string. In this case, the string is returned

truncated. The non-ovf versions of the procedure simply throw an exception.

If the input file is not specified, then the standard input file is used.

Note that the behavior of this function without the ovf flag, and catching the

StringDestinationOverflow exception is similar, but the ovf flag version allows the partial

left hand side of the input to be recovered.

Exceptions: StringDestinationOverflow, CurrentBlockFull

procedure ints(var s: string; i: integer [; fl: integer] | [fmt: string]);

function ints(i: integer [; f l: integer] | [fmt: string]): pstring;

Convert integer i to string s. The versions with a field fl format the number using the field

using ISO 7185 Pascal rules for output using a field. Negative (left justified) fields are also

allowed.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" in the main text.

Exceptions: FormatTooLarge, InvalidFieldSpecification, NumberOverflowsFormat,
NegativeNotPlaced, CurrentBlockFull

March 6,

2011
THE LANGUAGE PASCALINE

206

procedure reals(var s: string; r: real [; f: integer] | [; fl: integer; fr: integer] | [; fmt: string]);

function reals(r: real[; f: integer] | [; fl: integer; fr: integer] | [; fmt: string]): pstring;

Convert real r to string s with fraction f. The versions with a field fl format the number using

the field using ISO 7185 Pascal rules for output using a field. Negative (left justified) fields

are also allowed.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" in the main text.

Exceptions: FormatTooLarge, InvalidFieldSpecification, InvalidRealNumber,
InvalidFractionSpecification, NegativeNotPlaced, CurrentBlockFull

procedure reales(var s: string; r: real [; fl: integer]);

function reales(r: real [; f l: integer]): pstring;

Convert real r to string s using "economy" format. The real is printed in the minimum number

of characters possible. If the decimal position can be placed into the number, then it is, and the

exponent is removed. All insignificant leading and trailing zeros are removed, and if there are

no digits to the right or left of the decimal point, then that is removed.

If the decimal point cannot be placed into the number with less total characters than a full ISO

7185 floating point number format, then the standard floating point format is used.

The versions of this call with a field fl fit the result into the field by padding it out with blanks,

either on the left for positive fields, or on the right for negative fields. If the number does not

fit into the specified field, then all of the required parts of the number are printed. Note that if

the ISO 7185 floating point number is chosen as the shortest length number, then the rules for

fields are identical to that of normal real output formats.

Exceptions: FormatTooLarge, InvalidFieldSpecification, CurrentBlockFull

procedure hexs(var s: string; w: lcardinal [; f l: integer]);

procedure hexs(var s: string; w: lcardinal; fmt: string);

function hexs(w: lcardinal [; f l: integer]): pstring;

function hexs(w: lcardinal; fmt: string): pstring;

Convert cardinal w to string s, using the hexadecimal radix system. The versions with a field

fl format the number using the field using ISO 7185 Pascal rules for output using a field.

Negative (left justified) fields are also allowed.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" in the main text.

Exceptions: FormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

THE LANGUAGE PASCALINE
March 6,

2011

 207

procedure octs(var s: string; w: lcardinal [; f l: integer]);

procedure octs(var s: string; w: lcardinal; fmt: string);

function octs(w: lcardinal [; f l: integer]): pstring;

function octs(w: lcardinal; fmt: string): pstring;

Convert cardinal w to string s, using the octal radix system. The versions with a field fl
format the number using the field using ISO 7185 Pascal rules for output using a field.

Negative (left justified) fields are also allowed.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" above.

Exceptions: FormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

procedure bins(var s: string; w: lcardinal [; f l: integer]);

procedure bins(var s: string; w: lcardinal; fmt:string);

function bins(w: lcardinal [; f l: integer]): pstring;

function bins(w: lcardinal; fmt: string): pstring;

Convert cardinal w to string s, using the binary radix system. The versions with a field fl
format the number using the field using ISO 7185 Pascal rules for output using a field.

Negative (left justified) fields are also allowed.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" above.

Exceptions: FormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

procedure writed([var f: text;] i: integer; fmt: string);

Convert integer i to character format and output to file f, using the decimal radix system.

Decimal numbers are well covered by the normal ISO 7185 Pascal standard write formats.

However, these routines add image formatting to them.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" in the main text.

If the output file is not specified, then the standard output file is used.

Exceptions: FormatTooLarge, InvalidFieldSpecification, NumberOverflowsFormat,
NegativeNotPlaced, CurrentBlockFull

March 6,

2011
THE LANGUAGE PASCALINE

208

procedure writer([var f: text;] r: real; fmt: string);

Convert real r to string s. Real numbers are well covered by the normal ISO 7185 Pascal

standard write formats. However, these routines add image formatting to them.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" in the main text.

If the output file is not specified, then the standard output file is used.

Exceptions: FormatTooLarge, InvalidFieldSpecification, InvalidRealNumber,
InvalidFractionSpecification, NegativeNotPlaced, CurrentBlockFull

procedure writere([var f: text;] r: real; fl: integer);

procedure writere([var f: text;] r: real);

Write real r to the "economy real" format to either the specified output file f, or to the

standard output. The economy real format is explained in the reales routines descriptions.

The versions with a field fl fit the output to the field using standard Pascaline rules, including

negative fields.

If the output file is not specified, then the standard output file is used.

Exceptions: FormatTooLarge, InvalidFieldSpecification, CurrentBlockFull

procedure writeh([var f: text;] w: lcardinal [; fl: integer]);

procedure writeh([var f: text;] w: lcardinal; fmt: string);

Write cardinal w to either the specified file f, or the standard output file, using the

hexadecimal radix system. The versions with a field fl format the number using the field using

standard Pascaline rules for output using a field. Negative (left justified) fields are also

allowed.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings".

Exceptions: FormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

THE LANGUAGE PASCALINE
March 6,

2011

 209

procedure writeo([var f: text;] w: lcardinal [; fl: integer]);

procedure writeo([var f: text;] w: lcardinal; fmt: string);

Write cardinal w to either the specified file f, or the standard output file, using the octal

radix system. The versions with a field fl format the number using the field using standard

Pascaline rules for output using a field. Negative (left justified) fields are also allowed.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" above.

Exceptions: FormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

procedure writeb([var f: text;] w: lcardinal [; fl: integer]);

procedure writeb([var f: text;] w: lcardinal; fmt: string);

Write cardinal w to either the specified file f, or the standard output file, using the binary

radix system. The versions with a field fl format the number using the field using standard

Pascaline rules for output using a field. Negative (left justified) fields are also allowed.

The versions with a fmt string copy the format string into the result string, then replace each

of the format characters with parts of the number. See H.3 "format strings" above.

Exceptions: FormatTooLarge, InvalidFieldSpecification,
NegativeValueNondecimal, NumberOverflowsFormat, NegativeNotPlaced,
CurrentBlockFull

function intv(s: [p]string [; var ovf: boolean]): integer;

Find value of string s with default decimal format. The number contained in the string, in

valid Pascal signed number format, is parsed and the value returned. The number can be

signed. Leading and trailing spaces are ignored, but extra characters past a valid number result

in an error.

If the number is unsigned, and has a valid radix specifier, one of "$", "&" or "%" prepended to

it, then that radix overrides the default decimal radix. If this override effect is not desired, then

the number should be checked for such radix specifications using index, and an error

generated.

The versions of this call that feature the ovf flag do not produce an error if the number is too

large to convert, but instead set the ovf flag, and then the result is undefined. Note that this is

the same behavior as catching an exception for the non-ovf version.

Exceptions: InvalidRadix, InvalidIntegerFormat, NumberTooLarge, StringNil

March 6,

2011
THE LANGUAGE PASCALINE

210

function hexv(s: [p]string [; var ovf: boolean]): lcardinal;

Find value of string s with default hexadecimal format. The number contained in the string, in

valid Pascal signed number format, is parsed and the value returned. The number may not be

signed. Leading and trailing spaces are ignored, but extra characters past a valid number result

in an error.

If the number has a valid radix specifier, one of "$", "&" or "%" prepended to it, then that

radix overrides the default hexadecimal radix. If this override effect is not desired, then the

number should be checked for such radix specifications using index, and an error generated.

The versions of this call that feature the ovf flag do not produce an error if the number is too

large to convert, but instead set the ovf flag, and then the result is undefined (and probably is

garbage). Note that this is the same behavior as catching an exception for the non-ovf version.

Exceptions: InvalidRadix, InvalidIntegerFormat, NumberTooLarge, StringNil

function octv(s: [p]string [; var ovf: boolean]): lcardinal;

Find value of string s with default octal format. The number contained in the string, in valid

Pascal signed number format, is parsed and the value returned. The number may not be signed.

Leading and trailing spaces are ignored, but extra characters past a valid number result in an

error.

If the number has a valid radix specifier, one of "$", "&" or "%" prepended to it, then that

radix overrides the default octal radix. If this override effect is not desired, then the number

should be checked for such radix specifications using index, and an error generated.

The versions of this call that feature the ovf flag do not produce an error if the number is too

large to convert, but instead set the ovf flag, and then the result is undefined (and probably is

garbage). Note that this is the same behavior as catching an exception for the non-ovf version.

Exceptions: InvalidRadix, InvalidIntegerFormat, NumberTooLarge, StringNil

THE LANGUAGE PASCALINE
March 6,

2011

 211

function binv(s: [p]string [; var ovf: boolean]): lcardinal;

Find value of string s with default binary format. The number contained in the string, in valid

Pascal signed number format, is parsed and the value returned. The number may not be signed.

Leading and trailing spaces are ignored, but extra characters past a valid number result in an

error.

If the number has a valid radix specifier, one of "$", "&" or "%" prepended to it, then that

radix overrides the default binary radix. If this override effect is not desired, then the number

should be checked for such radix specifications using index, and an error generated.

The versions of this call that feature the ovf flag do not produce an error if the number is too

large to convert, but instead set the ovf flag, and then the result is undefined (and probably is

garbage). Note that this is the same behavior as catching an exception for the non-ovf version.

Exceptions: InvalidRadix, InvalidIntegerFormat, NumberTooLarge, StringNil

function realv(s: [p]string): real;

Find value of real number string s. The string must contain a valid Pascal format real number.

Leading and trailing spaces are ignored, but extra characters past a valid number result in an

error.

Exceptions: InvalidIntegerFormat, IntegerTooLarge, InvalidRealFormat, StringNil

procedure subst[c][all](var s: string; m: string; r: string);

function subst[c][all](s: [p]string; m: [p]string; r: [p]string): pstring;

Substitutes a string within another string. The source string s is searched for the match string

m. If found, the match string is removed, and the replacement string r takes its place. The

string lengths and positions are readjusted for any size difference between the match and

replacement strings. The final string is either returned in the string s, or returned as the result.

Several variations exist. The matching process can be case sensitive, or not. In normal subst
calls, only the first match is replaced. In the "all" variations, all matching substrings are

replaced. Replacement strings are not searched in the "all" variations. The match process skips

over the replacement string.

Exceptions: StringNil

March 6,

2011
THE LANGUAGE PASCALINE

212

procedure openstring;

Causes a new string block level to be created. All strings that were dynamically allocated

within strings will be recorded within the new block, and disposed of automatically on

closestring.

Exceptions: None

procedure closestring;

Removes the current string block level. Each string that was allocated and recorded in the

current block is disposed of, and the surrounding string block, if it exists, is restored. All

strings dynamic allocations will then be recorded in that block.

It is an error if no block exists to close.

Exceptions: NoStringBlock

procedure exportstring(s: pstring);

Removes the indicated string s completely from the current string block. Only the current

block is searched. It is only possible to export a string from the block it was created in. If the

string does not exist in the current block, no error results.

Exceptions: NoStringBlock

procedure upstring(s: pstring);

Moves the indicated string s from the current block to the surrounding block. The string is

removed from the current block, and recorded in the surrounding block, if it exists. If the

string does not exist in the current block, or a surrounding block does not exist, no error

results. If the surrounding block is full, an error results.

Exceptions: OuterBlockFull

THE LANGUAGE PASCALINE
March 6,

2011

 213

I Annex I: Extended mathematics library

ISO 7185 Pascal kept the number of implemented transcendental functions limited to simplfy the base

implementation. This library introduces several of the more common extensions for math capability,

and also defines some special constants used in the IEEE 754 standard for floating point numbers,

which is most often used as the basis for computer floating point.

At this writing, IEEE 754 is has virtually taken over as the standard for all hardware implemented

floating point math, as well as most software implemented floating point math. However, there is little

in this library that cannot be interpreted for other formats as well. In fact, the nanval function, that

returns the exact code for a given NaN, is the only truly IEEE 754 dependent function in the library.

This may be important for legacy implementions that were created before the standard, or for

simplified hardware and software implementations using formats different from IEEE 754.

I.1 Functions

The following functions exist in the math library.

March 6,

2011
THE LANGUAGE PASCALINE

214

Name Function

sign(x) Find sign x

exp2(x) Power function, base 2 x

exp10(x) Power function, base 10 x

log2(x) Logarithm, base 2 x

log10(x) Logarithm, base 10 x

tan(x) Tangent x

cot(x) Cotangent x

arcsin(x) Arc Sine x

arccos(x) Arc Cosine x

arccot(x) Arc Cotangent x

arctan2(x, y) Arc tangent corrected for other quadrants x

pow(x,y) x to the power y

sinh(x) Hyperbolic Sine x

cosh(x) Hyperbolic Cosine x

tanh(x) Hyperbolic Tangent x

coth(x) Hyperbolic Cotangent x

arcsinh(x) Inverse Hyperbolic Sine x

arccosh(x) Inverse Hyperbolic Cosine x

arctanh(x) Inverse Hyperbolic Tangent x

arccoth(x) Inverse Hyperbolic Cotangent x

pinfinity(x) Test if positive infinity x

ninfinity(x) Test if negative infinity x

nan(x) Test if x is a NaN

qnan(x) Test if x is a quiet NaN

snan(x) Test if x is a signaling NaN

nanval(x) Returns the code for a NaN x

frac(x) Returns the mantissa, or fractional part of x

expo(x) Returns the exponent of x

makereal(e,f) Make a real from exponent and fraction e and f

Unless otherwise specified, all of the functions take and receive lreals. This means that they can both

convert from any of sreal, real or lreal, and have their results converted to same.

I.2 Further trancendentals

exp2, exp10, log2, log10, tan, cot, arcsin, arcos, arccot, arctan2 and pow are provided.

Many of these were not included in the ISO 7185 standard because they can be calculated from the

other, ISO 7185 functions. They are included here both for convenience and because itôs possible they

can be calculated with greater precision by a routine specifically created for that function.

I.3 Hyperbolics

The hyperbolic functions sinh(x), cosh(x), tanh(x) coth(x), arcsinh(x), arccosh(x),
arctanh(x), and arccoth(x) give the transcendental functions calculated along a hyperbola, instead

of a circle.

THE LANGUAGE PASCALINE
March 6,

2011

 215

I.4 Special floating point values

A number can be tested for positive infinity with pinfinity(x), and negative infinity with ninfinity(x).
If the implementation does not discriminate between positive and negative infinity, then all infinities

are considered positive.

Predefined constants are available as pi and eu (for Eulerôs number). These constants are represented

in their maximum precision as lreals.

I.5 NaN functions

The NaN fuctions return true if the number is the specified NaN. nan(x) tests for any class of NaN.

qnan(x) tests only for quiet, or non-signaling NaNs. snan(x) tests for signaling NaNs.

For any NaN value, the function nanval(x) returns the exact NaN number. This is the fraction value

without the hidden and signal bits.

Note that the Pascaline implementation may treat NaNs as errors, or only return NaNs to the program

by special option.

The exact meaning of a particular NaN code is implementation dependent. It is also possible for the

NaN codes to have different meanings depending on if a quiet and signaling NaN is indicated.

Note that finding the exact code of a NaN with nanval is specific to the IEEE 754 standard.

I.6 Utility functions

sign(x) returns the sign of either real or integer x as -1 for negative, and +1 for positive. The function

expo(x) returns the binary (base 2) exponent of the number x as an integer. It is a signed number

expressing the number of binary point dividing the whole part of the number from the fractional part,

expressed as an offset from the extreme right side of the number.

The function frac(x) returns the lcardinal value of the mantissa for real number x. If the mantissa of

x has more significant digits than can be contained by lcardinal, an error results.

The procedure makereal(e, f) expects an exponent value as returned by the expo function and a

mantissa value as returned by the frac function and unites them to make a real floating point result.

I.7 Exceptions in the math library

The following exceptions are thrown by procedures and functions in math.

Note that many exceptions in the math library are the same as standard Pascaline exceptions in Annex

O.

March 6,

2011
THE LANGUAGE PASCALINE

216

ValueOutOfRange Value out of range

ZeroDivide Zero divide

RealOverflow Real overflow.

RealUnderflow Real underflow.

RealProcessingFault Real processing fault.

InvalidFieldSpecification Invalid field specification.

InvalidRealNumber Invalid real number.

InvalidFractionSpecification Invalid fraction specification;

InvalidRealFormat Invalid real format.

ArgumentNegative Negative argument is invalid

ArgumentZero Zero argument is invalid

ArgumentRange Argument out of range

math establishes a series of exception handlers for each of the above exceptions during startup.

Exceptions not handled by a client program of math will go back to math, then print a message

specific to the error, then the general exception will be thrown.

Not all procedures and functions throw all exceptions. See each procedure or function description for a

list of exceptions thrown. A client of math need only capture the exceptions occurring in the procedure

or function that is called.

I.8 Functions, procedures and constants in the math library

function sign(x: lreal): integer;

Find sign of x. Returns either a -1 for negative, or +1 for positive.

Exceptions: none

function exp2(x: lreal): integer;

Power function, base 2. Computes 2 to the power x, the base 2 exponential of x.

Exceptions: none

function exp10(x: lreal): lreal

Power function, base 10. Computes 10 to the power x, the base 10 exponential of x.

Exceptions: none

THE LANGUAGE PASCALINE
March 6,

2011

 217

function log2(x: lreal): lreal;

Logarithm, base 2. Computes the base 2 logarithm of x. If is an error if the x is negative or

zero.

Exceptions: ArgumentNegative, ArgumentZero

function log10(x: lreal): lreal;

Logarithm, base 10. Computes the base 10 logarithm of x. It is an error if x is negative or zero.

Exceptions: ArgumentNegative, ArgumentZero

function tan(x: lreal): lreal;

Tangent. Finds the tangent of x, where x is in radians.

Exceptions: RealOverflow

function cot(x: lreal): lreal;

Cotangent. Find the cotangent of x, where x is in radians.

Exceptions: none

function arcsin(x: lreal): lreal;

Arc sine. Finds the arc sine of x. x must be in the range -1 to 1.

Exceptions: ArgumentRange

function arccos(x: lreal): lreal;

Arc Cosine. Finds the arc cosine of x in radians. x must be in the range -1 to 1.

Exceptions: ArgumentRange

function arccot(x: lreal): lreal;

Arc Cotangent. Finds the arc cotangent of x in radians. x must be in the range -1 to 1.

Exceptions: ArgumentRange

March 6,

2011
THE LANGUAGE PASCALINE

218

function arctan2(x, y: lreal): lreal;

Arc tangent corrected for other quadrants. Computes the value of the arc tangent of y/x using

the signs of both arguments. If is an error if both arguments are zero.

Exceptions: ArgumentZero

function pow(x: lreal; y: lineger): lreal;

x to the power y. Calculates x raised to the power y. It is an error if x is negative.

Exceptions: ArgumentNegative, ArgumentRange

function sinh(x: lreal): lreal;

Hyperbolic Sine. Finds the hyperbolic sine of x.

Exceptions: ArgumentRange

function cosh(x: lreal) : lreal;

Hyperbolic Cosine. Finds the hyperbolic cosine of x.

Exceptions: ArgumentRange

function tanh(x: lreal) : lreal;

Hyperbolic Tangent. Finds the hyperbolic tangent of x.

Exceptions: none

function coth(x: lreal) : lreal;

Hyperbolic Cotangent. Finds the hyperbolic cotangent of x.

Exceptions: none

function arcsinh(x: lreal) : lreal;

Inverse Hyperbolic Sine. Finds the hyperbolic arc sine of x.

Exceptions: none

THE LANGUAGE PASCALINE
March 6,

2011

 219

function arccosh(x: lreal) : lreal;

Inverse Hyperbolic Cosine. Finds the inverse hyperbolic cosine of x. Finds the hyperbolic arc

cosine of x. x must be greater or equal to 1.0.

Exceptions: ArgumentRange

function arctanh(x: lreal) : lreal;

Inverse Hyperbolic Tangent. Finds the inverse hyperbolic tangent of x. x must be less than or

equal to 1.0.

Exceptions: ArgumentRange

function arccoth(x: lreal) : lreal;

Inverse Hyperbolic Cotangent. Finds the inverse hyperbolic cotangent of x

Exceptions: none

function pinfinity(x: lreal): boolean;

Test if positive infinity. Returns true if x is positive infinity, otherwise false.

Exceptions: none

function ninfinity(x: lreal): boolean;

Test if negative infinity. Returns true if x is negative infinity, otherwise false.

Exceptions: none

function nan(x): boolean;

Test if x is a NaN. Returns true if x contains a NaN or Not A Number code, either quiet or

signaling, otherwise false.

Exceptions: none

function qnan(x: lreal): boolean;

Test if x is a quiet NaN. Returns true if x contains a quiet NaN, otherwise false.

Exceptions: none

March 6,

2011
THE LANGUAGE PASCALINE

220

function snan(x: lreal): boolean;

Test if x is a signaling NaN. Returns true if x contains a signaling NaN, otherwise false.

Exceptions: none

function nanval(x: lreal): lcardinal;

Returns the code for a NaN. Returns the code for the NaN x, without the quiet or signaling

flag. It is an error if x is not a NaN.

Exceptions: NotANaN

function frac(x: lreal): lcardinal;

Returns the mantissa, or fractional part of x. The number returned is with the binary point at

the far right of the number.

Exceptions: none

function expo(x: lreal): linteger;

Returns the exponent of x. The exponent is adjusted so that the mantissa has the binary point at

the extreme right of the number, that is, the exponent expresses the number of binary digits to

the left or right of that position to represent the number, with positive exponents moving the

binary point to the right, and negative exponents moving the binary point to the left.

Exceptions: none

function makereal(e: linteger; f: lcardinal): lreal;

Make a real from exponent and fraction. Accepts an exponent e and fraction f with the fraction

having a binary point at the extreme right side, and the exponent as an offset to that. It is an

error if the resulting number cannot be represented in lreal format.

Exceptions: RealOverflow

THE LANGUAGE PASCALINE
March 6,

2011

 221

J Annex J: Terminal Interface Library

Standard ISO 7185 Pascal uses an I/O paradigm that is serial, or more correctly "line oriented". Each

line is built up in sections, then output to the I/O device with an appended "end of line". The end of

line causes the current line to be completed, and the next line begins.

The next level of paradigm is the presentation of lines onto a 2d text surface. This can simply be an

emulation of the serial only system or ñvirtual paperò using a screen that scrolls up from the bottom.

The next step is to allow full addressing of the 2d surface and allowing text to be placed anywhere

within that surface. To this is added colors, different text presentation modes, and finally advanced,

multiple device input.

terminal starts in ISO 7185 Pascal compatible mode, then allows the program to move to a full

addressable surface without automatic scrolling. In advanced mode, terminal emulates an infinite

virtual surface where the terminal exists as a window clipped to the origin. This is the most consistent

model of such a surface.

Because terminal overrides the interface between the program and the operating system it runs on, all

of the ISO 7185 Pascal defined serial I/O works compatibly to the terminal presented surface. It is

also modal, meaning that changes to character modes affect all further output to the terminal.

terminal introduces the concept that several devices can be used for input at the same time. The

normal user keyboard is supplemented by a mouse, timers and a joystick. These are all implemented

via the event concept, which unifies the input and removes the need to poll multiple devices.

terminal gives a set of logical events for common control keys from the keyboard that allow the

program to avoid direct recognition of implementation dependent key codes.

In addition to the default presentation surface, terminal is capable of switching between multiple

display surfaces. This capability has several uses.

J.1 ISO 7185 Pascal Compatible Mode

To write data to the terminal screen, ISO 7185 Pascal write calls are used. A write statement places

each character on the screen, then moves the cursor to the right, obeying any automatic line wrapping.

If a writeln is called, then the cursor is returned to the left side of the screen, one line down. If the end

of the line is reached, and automatic scrolling is enabled, then the screen will scroll upwards.

The page procedure, which causes a printer to move to the next (blank) page, is emulated by waiting

for the user to acknowledge the contents of the screen, then the screen is cleared and the cursor moves

to the upper left hand position (1,1).

J.2 Basic Cursor Positioning

The cursor is the point where text is entered onto the screen. Itôs usually marked with a blinking block

or underline. To move the cursor one character up, down, left or right, the up, down, left and right
procedures are used. To move the cursor anywhere on the screen, the cursor call is used. To find out

where the cursor currently is, the functions curx and cury return the current x and y coordinates of it.

The character cells on the screen are labeled from 1 to N, where in x 1 is the left side of the screen, and

N is the right side of the screen. In y 1 is the top of the screen, and N is the bottom of the screen.

March 6,

2011
THE LANGUAGE PASCALINE

222

The actual size of the screen is system specific, and can be found by maxx and maxy, which return

the maximum index in x and y for the screen. When a terminal is emulated in a windowing system, it

usually by default 25 lines of 80 characters each, because that was a very common size in terminals.

The cursor can be moved to the home, or 1,1 position, by the home procedure. The entire display can

be cleared with the cursor moved to the home position by the clear procedure.

J.3 Automatic Mode

Automatic mode is the mode that causes terminal to scroll upwards when the bottom of the screen is

reached, and an eoln is written. Line wrap, or the wrapping of characters back to the left at the next

line if text is written off the right hand side, is an automatic mode. The automatic mode is useful for

emulating ISO 7185 Pascal serial mode programs, but rapidly gets in the way for advanced programs.

Automatic mode can be turned off with auto. Turning auto off converts (or actually, reveals) the

screen as a character surface that goes from -maxint to +maxint in both x and y, and has its origin at

1,1, and the screen is a "viewport" on this surface that extends from 1,1 to maxx, maxy. Text can be

drawn anywhere, including off screen, but the characters outside of the 1,1 to maxx, maxy box will

not be seen, and are "clipped out" of view. It can be determined if the cursor lies within the screen's

bounds by curbnd.

The "virtual screen" that appears with auto off is a good match for today's windowing environments.

Text can be drawn without worrying if it will cause the line to wrap, or the screen to scroll. And if a

line of text happens to extend off the screen, that does not cause an error.

J.4 Tabbing

terminal will keep track of tabs set in x, for any character position. When terminal starts, the tabs

are set to every 8th position on the screen, i.e., positions x= 9, 17, etc.

Outputting a tab character will cause the cursor to move to the next tab position on the line. If the

cursor is at a tab position, then it will move to the next one. Tab positions can be set by settab, and

cleared by restab. clrtab clears all set tabs.

J.5 Scrolling

The screen can be scrolled by the scroll procedure, which implements arbitrary direction scrolling. If

the x value given is positive, then the screen data scrolls up. If the x value is negative, then the screen

data scrolls down. If the y value is positive, the screen data scrolls left, and if it's negative, the screen

data scrolls right. If either x or y is 0, then there is no movement in that direction.

J.6 Colors

There are two colors to set for text. One is the foreground, and the other is the background. The

foreground is the color within the character itself. The background is the space behind the character.

The possible colors are chosen from the two sets of primary colors:

type color = (black, white, red, green, blue, cyan, yellow,

magenta);

Characters are written in the currently set foreground and background colors. The foreground color is

set by fcolor, and the background color by bcolor.

THE LANGUAGE PASCALINE
March 6,

2011

 223

The current background color is also used to set the color of any blanked out areas caused by other

commands. For example, the clear procedure clears the screen to the background color. Scrolls, either

programmer selected or automatic, use the background color for any uncovered areas that are blanked

out.

J.7 Attributes

terminal provides many attribute controls, each of which can be switched on or off individually.

Attribute Result

reverse Enables reverse video.

underline Underlines each character.

superscript Gives a smaller and higher character for

subscripting.

subscript Gives a smaller and lower character for

superscripting.

italic Prints in italic or slanted characters.

bold Prints in extra dark, or bold characters.

Strikeout Prints characters with a horizontal bar through

them.

blink Blinks each character on and off.

For programs to maintain portability, the programmer should assume two things. First, that only a

single attribute at one time can be set. This would mean that setting a second attribute after a first one

is set, would cause the first attribute to be unset.

Second, the programmer should not assume that any one particular attribute is available. Many older

terminals do have more than one or two attributes. Superscript, subscript, italic and strikeout
are rare in standalone terminals. Superscript, subscript, italic and bold are rare today on

graphical windowing systems because they alter the geometry of the characters such that it is difficult

or impossible to emulate a character cell in such a system. blink is also rare in graphical systems

because of the computational work required.

For this reason, there is a general mode, standout, that can be enabled or disabled just like an

attribute. What standout does is enable an attribute the terminal does have, so that the program does

not have to select a specific attribute.

J.8 Multiple Surface Buffering

terminal implements the ability to have logical screens in buffers. This is a copy of the characters on

the screen, saved in a buffer of the same size as the screen. Logical buffers have many uses. Multiple

screens can be kept, and quickly switched to the user. A program, like an editor, that wants to save the

screen as it was before it started, can switch away to a second screen to do its work, then switch back

to the original screen to restore its contents. Buffers can also be used to accomplish animation.

The select procedure sets both the current screen to be displayed, and also the screen that updates are

to go to. When terminal starts, these are both set to the same screen, number 1. Any screen can be

selected, and the display screen and the update screen can be different. If the update screen is not the

March 6,

2011
THE LANGUAGE PASCALINE

224

one in display, then all of the write statements will place characters in the buffer, but not on screen.

This "split mode" is typically used for animation.

Implementations are free to limit the total number of logical screens available. The user should assume

no more than 10 logical screens are available.

J.9 Advanced Input

terminal implements an advanced output model that is upward compatible with the ISO 7185 Pascal

serial model. Similarly, an advanced input model is also implemented that meets the needs of newer

systems.

Today's deal with multiple input devices, not just the keyboard. Devices include a mouse, a joystick,

timers, and other future devices. The standard method on small computers was to poll for such devices,

or accept interrupts from them. The difficulty with those solutions was that these methods did not fit

well with modern multitasking systems.

One method would be to use a multitask thread per device. However, this complicates small programs

unnecessarily. The common solution today is "events", and the "event loop". The event model takes

advantage of the fact that user input devices don't generate a lot of high bandwidth data. Each of the

devices attached to the input from the user have their data packaged as "messages", which are small

records, which are the description of the event. These events are then placed in a queue, and the

program pulls the events, one at a time, from the queue and acts on them.

The description of an event record is:

THE LANGUAGE PASCALINE
March 6,

2011

 225

module terminal ;

const maxtim = 10; { maximum number of timers available }

type

joyhan = 1..4; { joystick handles }

joynum = 0..4; { number of joysticks }

joybut = 1..4; { joystick buttons }

joybtn = 0..4; { joystick number of buttons }

joyaxn = 0..3; { joystick axies }

mounum = 0..4; { number of mice }

mouhan = 1..4; { mouse handles }

moubut = 1..4; { mouse buttons }

timhan = 1..maxtim; { timer handle }

funky = 1..100; { function keys }

{ events }

evtcod = (etchar, { ANSI character returned }

 etup, { cursor up one line }

 etdown, { down one line }

 etleft, { left one character }

 etright, { right one character }

 etleftw, { left one word }

 etrightw, { right one word }

 ethome, { home of document }

 ethomes, { home of screen }

 ethomel, { home of line }

 etend, { end of document }

 etends, { end of screen }

 etendl, { end of line }

 etscrl, { scroll left one character }

 etscrr, { scroll right one character }

 etscru, { scroll up one line }

 etscrd, { scroll down one line }

 etpagd, { page down }

 etpagu, { page up }

 ettab, { tab }

 etenter, { enter line }

 etinsert, { insert block }

 etinsertl, { insert line }

 etinsertt, { insert toggle }

 etdel, { delete block }

 etdell, { delete line }

 etdelcf, { delete character forward }

 etdelcb, { delete character backward }

 etcopy, { copy block }

 etcopyl, { copy line }

March 6,

2011
THE LANGUAGE PASCALINE

226

 etcan, { cancel current operation }

 etstop, { stop current operation }

 etcont, { continue current operation }

 etprint, { print document }

 etprintb, { print bl ock }

 etprints, { print screen }

 etfun, { function key }

 etmenu, { display menu }

 etmouba, { mouse button assertion }

 etmoubd, { mouse button deassertion }

 etmoumov, { mouse move }

 ettim, { timer matures }

 etjoyba, { joystick button assertion }

 etjoybd, { joystick button deassertion }

 etjoymov, { joystick move }

 etterm); { terminate program }

{ event record }

evtrec = record

 case etype: evtcod of { event type }

 { ANSI character returned }

 etchar: (char: char);

 { timer handle that matured }

 ettim: (timnum: timhan);

 etmoumov: (mmoun: mouhan ; { mouse number }

 moupx, moupy: integer); { mouse movement }

 etmouba: (amoun: mouhan; { mouse handle }

 amoubn: moubut); { button number }

 etmoubd: (dmoun: mouhan; { mouse handle }

 dmoubn: moubut); { button number }

 etjoyba: (ajoyn: joyhan; { joystick number }

 ajoybn: joybut); { button number }

 etjoybd: (djoyn: joyhan; { joystick number }

 djoybn: joybut); { button number }

 etjoymov: (mjoyn: joyhan; { joystick number }

 joypx, joypy, joypz: integer); { joys tick

 coordinates }

 etfun: (fkey: funky); { function key }

 etup, etdown, etleft, etright, etleftw, etrightw, ethome,

 ethomes, ethomel, etend, etends, etendl, etscrl, etscrr,

 etscru, etscrd, etpagd, etpagu, ettab, etenter, etinsert,

 etinsertl, etinsertt, etdel, etdell, etdelcf, etdelcb, etcopy,

 etcopyl, etcan, etstop, etcont, etprint, etprintb, etprints,

 etmenu, etterm: (); { normal events }

THE LANGUAGE PASCALINE
March 6,

2011

 227

 { end }

end ;

begin ! terminal

end .

The next event for the program is retrieved via the event call. The basis of the event system is that

events must be retrieved often enough that the input queue does not fill up. Thus, an "event model"

program will be centered around the event loop that gets the next event, acts on it, and returns to the

top for more events.

An important principle of event handling is that events that are not defined for a compliant program

are ignored. That is, if an event not defined for terminal is received, it will be ignored. This is the

basis of upward compatibility. If a new event is defined, existing programs will simply ignore it.

A typical event loop is as follows.

program p;

joins terminal ;

var er: evtrec;

begin

 repeat

 terminal .event(er); ! get next event

 case er.etype of

 etchar: if er.char = ógô then ; ! perform character action

 etmoumov: ! perform mouse move action

 else ! do nothing

 end

 until er.etype = etterm ! until user orders terminate

end .

Note the final default case that does nothing.

J.10 Event callbacks

An alternative to receiving events as records are the event based virtual methods:

March 6,

2011
THE LANGUAGE PASCALINE

228

module terminal ;

virtual procedure evchar(c: char); begin end ;

virtual procedure evtim(t: timhan); begin end ;

virtual procedure evmoumov(m: mouhan); begin end ;

virtual procedure evmouba(h: mouhan; b: moubut); begin end ;

virtual procedure evmoubd(h: mouhan; b: moubut); begin end ;

virtual procedure evjoyba(h: joyhan; b: joybut); begin end;

virtual procedure evjoybd(h: joyhan; b: joybut); begin end ;

virtual procedure evjoymov(h: joyhan; x, y, z: integer); begin en d;

virtual procedure evfun(k: funky); begin end ;

virtual procedure ev up; begin end ;

virtual procedure ev down; begin end ;

virtual procedure ev left; begin end ;

virtual procedure ev right; begin end ;

virtual procedure ev leftw; begin end ;

virtual procedure ev rightw; begin end ;

virtual procedure ev home; begin end ;

virtual procedure ev homes; beg in end ;

virtual procedure ev homel; begin end ;

virtual procedure ev end; begin end ;

virtual procedure ev ends; begin end ;

virtual procedure ev endl; begin end ;

virtual procedure ev scrl; begin end ;

virtual procedure ev scrr; begin end ;

virtual procedure ev scru; begin end ;

virtual procedure ev scrd; begin end ;

virtual procedure ev pagd; begin end ;

virtual procedure ev pagu; begin end ;

virtual procedure ev tab; begin end ;

virtual procedure ev enter; begin end ;

virtual procedure ev insert; begin end ;

virtual procedure ev insertl; begin end ;

virtual procedure ev insertt; begin end ;

virtual procedure ev del; begin end ;

virtual procedure ev dell; begin end ;

virtual procedure ev delcf; begin end ;

virtual procedure ev delcb; begin end ;

virtual procedure ev copy; begin end ;

virtual procedure ev copyl; begin end ;

virtual procedure ev can; begin end ;

virtual procedure ev stop; begin end ;

virtual procedure ev cont; begin end ;

virtual procedure ev print; begin end ;

virtual procedure ev printb; begin end ;

virtual procedure ev prints; begin end ;

virtual procedure ev menu; begin end ;

virtual procedure ev term; begin end ;

THE LANGUAGE PASCALINE
March 6,

2011

 229

begin ! terminal

end .

Each event procedure corresponds to an event from the evtrec record. When event has an event to

return to the calling program, it first calls the default implementation of the corresponding virtual

procedure, which flags that the event is unhandled, and should be returned to the caller.

The alternative method is activated by overriding the virtual procedure corresponding to the event that

is to be received directly. event directly calls the overriding procedure, and the event is processed

there. If the overriding procedure does not want to handle the event, then the inherited version of the

procedure is called in the overrider. This accomplishes two things. First, any other overriders that are

chained to the procedure are executed, so that they may handle the event. Finally, if none of the

overriders wish to handle the event, the chain ends with the default implementation, which then flags

that the event is to be returned to the caller of event. In this way, if none of the overriders handle the

event, it is returned as a normal record back to the event caller.

There is no parallel execution implied in such event callbacks. The event function still must be called

to activate the event procedures, and all such procedures run in the context of the current process.

The event procedures are prefixed with ñevò (event) to prevent them from colliding with the names of

the normal terminal procedures.

The event procedures are a way to break the rigid formalism of event loop design. In the event loop

model, the event loop must be changed anytime there is new code that needs to handle events. Using

event procedures, new handlers can be added without such modification. This enhances modularity,

since the new code may be in a different module. This aids the extendibility of the system.

Event procedures are also a way to obfuscate a program by making it less obvious where the flow of

control is in the program. The advantage to the event loop model is that it creates clear flow of control,

even when handling asynchronous user generated events.

J.11 Timers

Timers allow a terminal program to perform periodic events, such as screen updates, and keeping

track of time. From 1 to 10 timers are available, numbered 1..10. Each timer is given a time to

measure, in 100 Microsecond counts (see G.3 ñTime and Dateò in services for more details). When

the timer is done, it sends an event to the event queue.

Timers can either simply stop when their time is done, or they can automatically start timing their

original set time again. This is the "recurrent" mode, and it's useful when an activity needs to be

performed periodically for the life of the program. For example, updating the screen on an active

program, or checking when to update a clock display.

Timers are set by timer. A timer can be stopped or "killed" by killtimer. Killing a timer that is not

active will not generate an error. This allows a single run timer to be killed without timing out during

the call.

Due to the queuing nature of the event system, there is no guarantee about the accuracy of a timer. It

can arrive later than its set time. If the program is late getting back to the event queue, or is busy with

other events that occur before the timer, receipt of the timer event can be very late. All that receiving a

timer event does is indicate that the time it measured has passed.

March 6,

2011
THE LANGUAGE PASCALINE

230

An example of timer use is the display of a clock, using the services time call. If a recurrent timer is

set to go off on every second, the program should not simply advance the second on each timer event.

Instead, the timer event should tell the program to read time to determine if the second has changed,

and what value it currently has.

Implementations are free to limit the number of timers. Users should assume no more than 10 timers

are available.

J.12 The Frame Timer

When performing animation, it is common to flip between screen buffers with select. The ideal time to

perform a buffer flip is during the retrace time for the display, or the time it takes the display drawing

hardware to reset to the top of the screen, and start drawing from the top again. Hiding the buffer flip

in the retrace time can be key to making animations appear smooth.

The frame timer is a timer much like the standard timers, except that it is set automatically by the

implementation. It is simply enabled or disabled, and gives an etframe event when it times out. On

hardware that is capable, the etframe event is triggered by the beginning of the retrace cycle.

If an interrupt for the start of the retrace cycle is not available, then the frame timer is simply defaulted

to a reasonable rate of redraw for animation, for example, 30 times per second.

J.13 Mouse

The mouse gives a position x,y on the screen, as well as from 1 to 4 buttons on it. A mouse actually

gives its position as relative movements in x and y, but the system converts this to a screen position.

The function mouse returns the number of mice attached to the system.

Mice generate two events. First, when the mouse moves, it generates position changes via the

etmoumov event. The program does not have to worry about where it is going. Each time the

position changes, a new x, y position is posted as an event.

The second event generated by a mouse is mouse button asserts and deasserts, etmouba and

etmoubd. An "assert" means a press of the button, and a "deassert" is the release of the button. Note

that instead of an on/off status check as polled by the program, the assert and deassert events give

exact notice of when the button changes state, and what it is changing to.

When there is more than one mouse per system, the default behavior should be to treat them as

separate, but equal controls on the screen from the same user. When a mouse moves or changes button

state, it gets control of the program. This matches the common use of multiple pointing devices, where

two devices are alternated by one user. For example, a trackball and a mouse may be just two different

input methods from one user.

Alternately, a second mouse could be a remote mouse over a network. This "collaborative computing"

model allows two users to look at the same document, with separate mice. Advanced implementations

of multiple mice such as these should be selected by the user.

Mice are subject to ñrate limitingò. This means that the number of events per second reported by the

mouse can be limited to no more than what the human viewer can perceive. This prevents the number

of mouse events from affecting program performance.

THE LANGUAGE PASCALINE
March 6,

2011

 231

J.14 Joysticks

From 0 to 4 joysticks may be supported. Each joystick can have from 0 to 3 "axes" of directions of

travel. In addition, each joystick can have 0 to 4 buttons. The function joystick returns the number of

joysticks in the system. The function joyaxis gives the number of axes on a given joystick. The

function joybutton gives the number of buttons on a given joystick.

The messages etjoyba or joystick button assert, and etjoybd or joystick button deassert, give events

for the assertion and deassertion of the buttons on a joystick. When any axis on a joystick moves, it

generates a etjoymov, or joystick movement, event. This event gives the relative setting of each axis

of the joystick.

Unlike a mouse, a joystick is entirely relative. Each axis is represented by an integer. If the axis is not

implemented it always reads 0. If the axis is deflected left, up or in, depending on the type of axis, then

it is negative. If it is right, down, or out, it is positive. The axis is determined in its amount of

deflection. If it is in the middle, it is 0. If it is deflected to the maximum, it is maxint, with the sign

giving the direction.

By convention, the axes on a joystick are:

1. Left/right, or slider.

2. Up/down

3. In/out

Joysticks are "rate limited" devices. This means that no matter how fast the joystick is "slewed", it will

only produce an event about every 10 milliseconds at maximum rate. The reason for this is that

humans cannot generally perceive events like movement of a pointer across the screen at a faster rate

than this, so there is no point in updating faster than that, and flooding the input event queue.

J.15 Function Keys

The system may have function keys, which are keys whose function are determined by the program.

The number of function keys implemented are found with funkey. Function key messages are sent by

the message etfun.

J.16 Automatic ñholdò Mode

terminal implements a feature to help with legacy programs designed to the ISO 7185 Pascal serial

I/O model. When a program exits that is unaware of the terminal model, the terminal window can

abruptly close. This means that any printout from the program is lost.

The automatic hold mode keeps the window open unless a etterm event is received, until the user

specifically closes the window. This mode is enabled by default in systems were it is valuable, i.e.,

windowing systems.

There are times when the automatic hold mode can be a problem. For example, if a user displayed

menu features a ñquitò option, it would be incorrect to hold that window after the user has already

closed the program.

To solve this, the autohold procedure can be used to set automatic hold mode off or on. With

automatic hold mode off, the window exits immediately when the program does.

March 6,

2011
THE LANGUAGE PASCALINE

232

J.17 Direct Writes

terminal accepts all standard ISO 7185 Pascal output methods, write, writeln, and page. However,

it can be faster to output characters to the console directly, bypassing the normal file protocol layers

inherent in the system. The procedure wrtstr outputs a character string directly to the terminal without

any interpretation of control characters. It cannot be used with auto on.

J.18 Printers

Terminal can be used to operate a printer using a subset of the terminal functionality. To model a

printer, terminal uses a one page buffer that can be written using normal terminal commands to

write to this ñvirtual screenò contained within the buffer. When the page procedure is executed, the

contents of the buffer is output to the printer as a whole page, then a new page can be written.

When terminal is connected to a printer file, the following conditions are true:

1. There is no input file associated with the printer, neither event or virtual event methods

function. event gives an exception. None of the input devices work, and timer, mouse,

joystick, function keys, the frame timer and the autohold set procedure all give exceptions.

2. The select call does not function, and gives an exception.

3. The dimensions given by maxx and maxy reflect the size of the printed page.

4. The exact set of attributes will be dependent on the printer. blink, of course, is never

available.

A printer device is viewed as accepting a series of pages to be printed. The last page should be

followed by a page procedure call, to insure that a partial page is not left in the page buffer, similar to

the way ISO 7185 Pascal does not allow partial lines in a text file. terminal may automatically add a

page call if that is not the last operation to the printer.

Printer devices are not associated with other, active screen terminal devices. It is up to the program

how to reformat printout to fit the printed page. Specifically, when printing a copy of an onscreen

page, extensive reformatting may be required.

Since printer device mode is a subset of terminal functionality, it is possible for any program

designed to output to a printer to have its output viewed on a terminal screen. Each page will then be

presented to the user in turn.

Printer devices are determined by the system, which knows which files are associated with printer

devices and which are not. Specifically, the list file which appears as a standard Pascaline header file

may be a printer device, a terminal, or a normal file.

J.19 Metafiles

A terminal metafile operates identically to a printer file except that all output is written to a file, and

not to an external device. The metafile contains not only the standard characters, eoln, page

commands, but can also represent the other output functions in terminal.

A metafile is opened with the procedure openmeta(f, x, y), where f is the file to open, and x and y

are the number of characters in the x and y character grid dimensions. A metafile is closed using the

standard Pascaline close procedure.

THE LANGUAGE PASCALINE
March 6,

2011

 233

A metafile has the same restrictions on input, event, select and other functions as a printer file does. It

does not have an input file or any input functions, nor a select procedure.

A metafile contains a complete representation of output to from terminal. It should be possible to

render a metafile to either a printer or a display, either by directly copying the file to a suitable printer,

or by using a conversion utility.

The format of a metafile is not defined. The only requirement is that all of the output operations,

including write/writeln and page, are encoded in the file.

J.20 Remote display

terminal is compatible with the use of ñremote displayò of presentation text. In this mode, the output
from terminal is encoded and sent over a communications channel. This is done for both input and

output functionality, and thus remote display mode is implemented without restriction of functionality

(unlike printer and metafile mode). In order for remote display mode to work, the following conditions

must be true:

1. All output functions must be applied in the order they were issued by the program.

2. All input events must be received in the order they were generated by the user.

Any synchronization between output and input is up to the program using terminal, just as it is in

local mode. For example having the user attempt to select a moving target with the mouse would be

highly dependent on the overall display rate of the system.

The exact format of the data passing over the communications channel to allow remote mode to

function is system dependent.

Terminal is designed to operate efficiently with such remote displays. For example, there is no ability

to read characters from the display.

J.21 Terminal objects

All of the procedures, functions and other declarations in terminal are also available in a terminal

object of the form:

March 6,

2011
THE LANGUAGE PASCALINE

234

module terminal ;

class screen (var input, outp ut: file) ;

var er: evtrec; ! event record

! E xecutive methods

procedure cursor(x, y: integer); begin end ;

function maxx: integer; begin end ;

function maxy: integer; begin end ;

procedure home; begin end ;

procedure del; begin end ;

procedure up; begin end ;

procedure down; begin end ;

procedure left; begin end ;

procedure right; begin end ;

procedure blink(e: boolean); begin end ;

procedure reverse(e: boolean); begin end ;

procedure underline(e: boolean); begin end ;

procedure superscript(e: boolean); begin end ;

procedure subscript(e: boolean); begin end ;

procedure italic(e: boolean); begin end ;

procedure bold(e: boolean); begin end ;

procedure strikeout(e: boolean); begin end ;

procedure standout(e: boolean); begin end ;

procedure fcolor(c: color); begin end ;

proced ure bcolor(c: color); begin end ;

procedure auto(e: boolean); begin end ;

procedure curvis(e: boolean); begin end ;

procedure scroll(x, y: integer); begin end ;

function curx: integer; begin end ;

function cury: integer; begin end ;

function curbnd: boolean; begin end ;

procedure select(u, d: integer); begin end ;

procedure event; begin end ;

procedure timer(i: timhan; t: integer; r: boolean); begin end ;

procedure killtimer(i: timhan); begin end ;

function mouse: mounum; begin end ;

function mousebutton(m: mouhan): moubut; begin end ;

function joystick: joynum; begin end ;

function joybutton(j: joyhan): joybtn; begin end ;

function joyaxis(j: joyhan): joyaxn; begin end ;

procedure settab(t: integer); begin end ;

procedure restab(t: integer); begin end ;

procedure clrtab; begin end ;

function funkey: funky; begin end ;

function frametimer(e: boolean); begin end ;

procedure autohold(e: boolean); begin end ;

THE LANGUAGE PASCALINE
March 6,

2011

 235

procedure wrtstr(s: string); begin end ;

! E vent callbacks

virtual procedure evchar(c: char); begin end ;

virtual procedure evtim(t: timhan); begin end ;

virtual procedure evmoumov(m: mouhan); begin end ;

virtual procedure evmouba(h: mouhan; b: moubut); begin end ;

virtual procedure evmoubd(h: mouhan; b: moubut); begin end ;

virtual procedure evjoyba(h: joyhan; b: joybut); begin e nd;

virtual procedure evjoybd(h: joyhan; b: joybut); begin end ;

virtual procedure evjoymov(h: joyhan; x, y, z: integer); begin en d;

virtual procedure evfun(k: funky); begin end ;

virtual procedure ev up; begin end ;

virtual procedure ev down; begin end ;

virtua l procedure ev left; begin end ;

virtual procedure ev right; begin end ;

virtual procedure ev leftw; begin end ;

virtual procedure ev rightw; begin end ;

virtual procedure ev home; begin end ;

virtual procedure ev homes; begin end ;

virtual procedure ev homel; begin end ;

virtual procedure ev end; begin end ;

virtual procedure ev ends; begin end ;

virtual procedure ev endl; begin end ;

virtual procedure ev scrl; begin end ;

virtual procedure ev scrr; begin end ;

virtual procedure ev scru; begin end ;

virtual procedure ev scrd; begin end ;

virtual procedure ev pagd; begin end ;

virtual procedure ev pagu; begin end ;

virtual procedure ev tab; begin end ;

virtual procedure ev enter; begin end ;

virtual procedure ev insert; begin end ;

virtual procedure ev insertl; begin end ;

virtual procedure ev insertt; begin end ;

virtual procedure ev del; begin end ;

virtual procedure ev dell; begin end ;

virtual procedure ev delcf; begin end ;

virtual procedure ev delcb; begin end ;

virtual procedure ev copy; begin end ;

virtual procedure ev copyl; begin end ;

virtual p rocedure ev can; begin end ;

virtual procedure ev stop; begin end ;

virtual procedure ev cont; begin end ;

virtual procedure ev print; begin end ;

virtual procedure ev printb; begin end ;

virtual procedure ev prints; begin end ;

virtual procedure ev menu; begin end ;

March 6,

2011
THE LANGUAGE PASCALINE

236

virtual procedure ev term; begin end ;

.

begin ! terminal

end .

The description of each method in a screen object appears with the same methods as the module

terminal in J.23.

When a screen object is instantiated, it accepts an input and an output file as parameters. Normally

these are the standard input and standard output fil es of the program. However, these can be

different files in derived objects.

A screen object contains an event record, so it is not necessary to specify an external event record in

the event procedure (nor possible).

A screen object can be created as follows:

program p;

joins terminal ;

var s i (input, output) : instance of terminal . screen ;

begin

 s i.home; { send cursor to home position }

 writeln(s i.output, óhello, terminal worldô);

 repeat { event loop }

 s i.event; { get next event }

 { process events }

 until s i. er.t ype = etterm { loop until program cancelled }

end .

Where terminal is the terminal module, and si is the screen object. screen objects can be

instantiated statically or dynamically.

screen objects contain their own state for the following:

1. Location of cursor.

2. Current attributes and colors.

3. Buffer working/display status.

4. Tab stops.

5. Timer numbers.

However, each screen object gets the complete state of the module terminal when it is created.

THE LANGUAGE PASCALINE
March 6,

2011

 237

Having each screen object possess its own state means that each object can be writing to its own

section of the screen in its own mode. Each object can even have its own private screen buffer, but

this must be specifically selected using the select procedure.

When multiple screen objects exist, and all have the cursor visibility on, the cursor will remain at the

last place it was specifically directed to. This can mean that the cursor will rapidly appear to swap back

and forth between the active drawing screen objects. This can be improved by only selecting one of

the screen objects as having a visible cursor. Typically, a the cursor should be placed to attract user

attention to where text is being entered, or if none is being entered, it should be turned off.

As in the procedural interface to terminal, events in the screen class can be registered as callbacks

via the virtual procedures. However, just as in the procedural interface, such callbacks do not function

unless the event method for the screen object is called.

J.22 Exceptions

The following exceptions are generated in terminal:

Identifier Meaning

TooManyFiles The total number of open files possible was

exceeded.

NoJoyStick No joystick access was available.

NoTimer No timer access was available.

ToManyTimers The total number of timers available was

exceeded.

FilenameEmpty Filename specified was empty.

InvalidScreenNumber Screen number specified was invalid.

InvalidHandle An invalid handle was specified.

InvalidTab An invalid tab position was specified.

CannotCreateScreenBuffer Cannot create a buffer for the screen.

CannotQueryJoystick Could not get information on joystick.

InvalidJoystickHandle Invalid handle specified for joystick.

InvalidTimerHandle Invalid handle specified for timer.

CannotWriteDirect Cannot write direct string with auto on.

terminal establishes a series of exception handlers for each of the above exceptions during startup.

Exceptions not handled by a client program of terminal will go back to terminal, then print a

message specific to the error, then the general exception will be thrown.

Not all procedures and functions throw all exceptions. See each procedure or function description for a

list of exceptions thrown. A client of terminal need only capture the exceptions occurring in the

procedure or function that is called.

Besides the exceptions on terminal procedures, the terminal module also can throw new exceptions on

existing standard calls read, readln, write, writeln, page, reset, rewrite, assign, close, length,

location, position, update, append, exists, change and delete, all of which are overridden by

terminal.

March 6,

2011
THE LANGUAGE PASCALINE

238

J.23 Procedures, functions and methods in terminal

For all of the following module calls, If the screen file f is not present, the default is the standard

output file, except for event, which defaults to the standard input file. If the procedure or function is

a method, neither the input nor output screen file can be specified, since it is inherent in the object.

procedure cursor([var f: text;] x, y: integer);

Set cursor location for output surface file f in x and y.

Exceptions: None

function maxx[(var f: text)]: integer;

Find maximum screen location x in output surface file f.

Exceptions: None

function maxy[(var f: text)]: integer;

Find maximum screen location y in output surface file f.

Exceptions: None

procedure home[(var f: text)];

Send cursor to 1,1 location (upper left of screen) in output surface file f.

Exceptions: None

procedure clear[(var f: text)];

Clears the screen to the current background color and sends the cursor to 1,1 location (upper

left of screen) in output surface file f.

Exceptions: None

THE LANGUAGE PASCALINE
March 6,

2011

 239

procedure del[(var f: text)];

Back up cursor by one character in output surface file f, and erase character at that location. If

the cursor is at the left side of the screen, and automatic mode is on, the cursor will be moved

up one line, and to the right of screen. If the cursor is at the top of the screen, extreme left,

then the screen will be scrolled down one line, and the cursor moves to the right side of the

screen.

Exceptions: None

procedure up[(var f: text)];

Move cursor up one line in output surface file f. If the cursor is already at the top line, and

automatic mode is on, the screen will be scrolled down, and the cursor remains at the same

position.

Exceptions: None

procedure down[(var f: text)];

Move cursor down one line in output surface file f. If the cursor is already at the bottom line,

and automatic mode is on, the screen will be scrolled up, and the cursor remains at the same

position.

Exceptions: None

procedure left[(var f: text)];

Back up cursor by one character in output surface file f. If the cursor is at the left side of the

screen, and automatic mode is on, the cursor will be moved up one line, and to the right of

screen. If the cursor is at the top of the screen, left, then the screen will be scrolled down one

line, and the cursor moves to the right side of the screen.

Exceptions: None

procedure right[(var f: text)];

Move forward by one character in output surface file f. If the cursor is at the right side of the

screen, and automatic mode is on, the cursor will be moved down one line, and to the left of

screen. If the cursor is at the bottom of the screen, right, then the screen will be scrolled up one

line, and the cursor moves to the left side of the screen.

Exceptions: None

March 6,

2011
THE LANGUAGE PASCALINE

240

procedure blink([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in blinking text in

output surface file f.

Exceptions: None

procedure reverse([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in reverse text in output

surface file f.

Exceptions: None

procedure underline([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in underlined text in

output surface file f.

Exceptions: None

procedure superscript([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in superscript text in

output surface file f.

Exceptions: None

procedure subscript([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in subscript text in

output surface file f.

Exceptions: None

procedure italic([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in italic text in output

surface file f.

Exceptions: None

THE LANGUAGE PASCALINE
March 6,

2011

 241

procedure bold([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in bold text in output

surface file f.

Exceptions: None

procedure strikeout([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in strikeout text in

output surface file f.

Exceptions: None

procedure standout([var f: text;] e: boolean);

If e is true, causes all further characters written to the screen to appear in standout text in

output surface file f. Standout is assigned to the first mode possible from the following order:

Reverse.

Underline.

Bold

Italic.

Strikeout.

Blink.

If none of those modes are available, standout is a no-op.

Exceptions: None

procedure fcolor([var f: text;] c: color);

Sets the foreground, or text color, to the color c in output surface file f.

Exceptions: None

procedure bcolor([var f: text;] c: color);

Sets the background, or space color, to the color c in output surface file f.

Exceptions: None

March 6,

2011
THE LANGUAGE PASCALINE

242

procedure auto([var f: text;] e: boolean);

Turns automatic mode on or off, according to e in output surface file f.

Exceptions: None

procedure curvis([var f: text;] e: boolean);

Turns cursor visibility on or off, according to e in output surface file f.

Exceptions: None

procedure scroll([var f: text;] x, y: integer);

Scroll in arbitrary directions. The screen is scrolled according to the differences in x and y.

Uncovered areas on the screen appear in the current background color.

Exceptions: None

function curx[(var f: text)]: integer;

Find the current x location of the cursor in output surface file f.

Exceptions: None

function cury[(var f: text)]: integer;

Find the current y location of the cursor in output surface file f.

Exceptions: None

function curbnd[(var f: text)]: boolean;

Check cursor in bounds. Returns true if the cursor is currently within the bounds of the screen

in output surface file f.

Exceptions: None

THE LANGUAGE PASCALINE
March 6,

2011

 243

procedure select([var f: text;] u, d: integer);

Select buffer to update and display. Selects the active buffer for update u, and display d in

output surface file f. The update buffer will receive the result of all writes. The display buffer

will be shown on screen.

Exceptions: CannotCreateScreenBuffer

procedure event[([var f: text;] var er: evtrec)];

Get next event. Retrieves the next event from the input queue from the terminal input file f to

event record er. If there is no event ready, the program will wait.

Note that specification of the event record is optional only for the terminal class method.

Exceptions: None

procedure timer([var f: text;] i: timhan; t: integer; r: boolean);

Set timer active in output surface file f. The timer i will be set to run for time t. If the repeat

flag r is set, then the timer will automatically repeat when the time expires. If the timer is

already in use, then it will cease its current timing, and perform the new time.

Exceptions: InvalidHandle

procedure killtimer([var f: text;] i: timhan);

Stop timer in output surface file f. Stops the timer i. If the timer is not active, no error is

reported.

Exceptions: InvalidHandle

function mouse[(var f: text)]: mounum;

Returns the number of mice in output surface file f.

Exceptions: None

function mousebutton([var f: text;] m: mouhan): moubut;

Returns the number of buttons on a given mouse m in output surface file f.

Exceptions: None

March 6,

2011
THE LANGUAGE PASCALINE

244

function joystick[(var f: text)]: joynum;

Returns the number of joysticks in the system in output surface file f.

Exceptions: None

function joybutton([var f: text;] j: joyhan): joybtn;

Returns the number of buttons on the given joystick j in output surface file f.

Exceptions: None

function joyaxis([var f: text;] j: joyhan): joyaxn;

Returns the number of axes on the given joystick j in output surface file f.

Exceptions: None

procedure settab([var f: text;] t: integer);

Set new tab. Sets a new tab location at t in output surface file f.

Exceptions: InvalidTab

procedure restab([var f: text;] t: integer);

Reset tab. Removes the tab at location t in output surface file f. If there is not a tab set there, it

is not an error.

Exceptions: InvalidTab

procedure clrtab[(var f: text)];

Clear all tabs. All tabs are removed from the tabbing table in output surface file f.

Exceptions: None

function funkey[(var f: text)]: funky;

Returns the number of function keys available in output surface file f.

Exceptions: None

THE LANGUAGE PASCALINE
March 6,

2011

 245

function frametimer([var f: text;] e: boolean);

Enables or disables the framing timer in output surface file f. If e is true, the frame timer is

enabled, otherwise disabled. The frame timer gives frame timer events, which occur

approximately on each refresh of the display screen. It may be tied to the refresh hardware, or

may be simulated via a timer.

Exceptions: NoTimer

procedure autohold([var f: text;] e: boolean);

Sets the state of automatic hold in output surface file f. If e is true, autohold is enabled,

otherwise disabled. autohold determines if the window will exit immediately if the program

self terminates. If an exit was not ordered via the user interface, the display is held until it is.

Exceptions: None

procedure wrtstr([var f: text;] s: string);

Writes the string s directly to the output surface file f. No control character interpretation is

done. This procedure is used to perform efficient writes to the display surface without per-

character overhead.

It is an error to call this routine when auto is enabled.

Exceptions: CannotWriteDirect

March 6,

2011
THE LANGUAGE PASCALINE

246

J.24 Events and Callbacks In terminal

For each item, both the event record section and the virtual procedure is presented. See the description

of the event record (J.9 ñAdvanced Inputò) for the format of the entire record.

Event: etchar: (c: char);

virtual procedure evchar(c: char);

Returns a keyboard character c.

Event: ettim: (timnum: timhan);

virtual procedure evtim(t: timhan);

Indicates the timer according to the timer handle t has expired.

Event: etmoumov

virtual procedure evmoumov(h: mouhan; x, y: integer);

The mouse with handle h has moved, to the position indicated by x and y.

Event: etmouba

virtual procedure evmouba(h: mouhan; b: moubut);

The mouse with handle h asserted the button b.

Event: etmoubd

virtual procedure evmoubd(h: mouhan; b: moubut);

The mouse with handle h deasserted the button b.

Event: etjoyba

virtual procedure evjoyba(h: joyhan; b: joybut);

The joystick with handle h asserted the button b.

Event: etjoybd

virtual procedure evjoybd(h: joyhan; b: joybut);

The joystick with handle h asserted the button b.

THE LANGUAGE PASCALINE
March 6,

2011

 247

Event: etjoymov

virtual procedure evjoymov(h: joyhan; x, y, z: integer);

The joystick with handle h moved, and the coordinates x, y and z. The values of each axis are

between ïmaxint..maxint. The number of axis actually present in the given joystick are

given by the function joyaxis. The value returned by an unimplemented axis is undefined.

Event: etfun

virtual procedure evfun(k: funky);

A function key was sent from the keyboard, with k giving the number of the key.

Event: etup

virtual procedure evup;

The key for move cursor up was sent from the keyboard.

Event: etdown

virtual procedure evdown;

The key for move cursor down was sent from the keyboard.

Event: etleft

virtual procedure evleft;

The key for move cursor left was sent from the keyboard.

Event: etright

virtual procedure evright;

The key for move cursor right was sent from the keyboard.

Event: etleftw

virtual procedure evleftw;

The key for move cursor left word was sent from the keyboard. This indicates the cursor

should be moved left one ñwordò, or over any series of non-space characters.

Event: etrightw

virtual procedure evrightw;

The key for move cursor right word was sent from the keyboard. This indicates the cursor

should be moved right one ñwordò, or over any series of non-space characters.

March 6,

2011
THE LANGUAGE PASCALINE

248

Event: ethome

virtual procedure evhome;

The key for move cursor to the home position in the document (top extreme left) was sent

from the keyboard.

Event: ethomes

virtual procedure evhomes;

The key for move cursor to the home position in the screen (top extreme left) was sent from

the keyboard.

Event: ethomel

virtual procedure evhomel;

The key for move cursor to the home position in the line (extreme left) was sent from the

keyboard.

Event: etend

virtual procedure evend;

The key for move cursor to the end position in the document (bottom extreme right) was sent

from the keyboard.

Event: etends

virtual procedure evends;

The key for move cursor to the end position in the screen (bottom extreme right) was sent from

the keyboard.

Event: etendl

virtual procedure evendl;

The key for move cursor to the end position in the line (extreme right) was sent from the

keyboard.

Event: etscrl

virtual procedure evscrl;

The key for scroll screen left one character was sent from the keyboard.

THE LANGUAGE PASCALINE
March 6,

2011

 249

Event: etscrr

virtual procedure evscrr;

The key for scroll screen right one character was sent from the keyboard.

Event: etscru

virtual procedure evscru;

The key for scroll screen up one character was sent from the keyboard.

Event: etscrd

virtual procedure evscrd;

The key for scroll screen down one character was sent from the keyboard.

Event: etpagd

virtual procedure evpagd;

The key for page down was sent from the keyboard.

Event: etpagu

virtual procedure evpagu;

The key for page up was sent from the keyboard.

Event: ettab

virtual procedure evtab;

The key for enter tab was sent from the keyboard.

Event: etenter

virtual procedure eventer;

The key for enter line was sent from the keyboard.

Event: etinsert

virtual procedure evinsert;

The key for insert block was sent from the keyboard.

March 6,

2011
THE LANGUAGE PASCALINE

250

Event: etinsertl

virtual procedure evinsertl;

The key for insert line was sent from the keyboard.

Event: etinsertt

virtual procedure evinsertt;

The key for insert toggle was sent from the keyboard. The action should be to toggle the state

of the insert/overwrite flag used to determine if new typed text overwrites previous text on

screen, or inserts new text between existing characters.

Event: etdel

virtual procedure evdel;

The key for delete block was sent from the keyboard.

Event: etdell

virtual procedure evdell;

The key for delete line was sent from the keyboard.

Event: etdelcf

virtual procedure evdelcf;

The key for delete character forward was sent from the keyboard. This indicates the character

to the right of the cursor should be deleted.

Event: etdelcb

virtual procedure evdelcb;

The key for delete character backward was sent from the keyboard. This indicates the

character to the left of the cursor should be deleted.

Event: etcopy

virtual procedure evcopy;

The key for copy block was sent from the keyboard. This indicates the currently selected block

should be copied.

THE LANGUAGE PASCALINE
March 6,

2011

 251

Event: etcopyl

virtual procedure evcopyl;

The key for copy line was sent from the keyboard. This indicates the current line should be

copied.

Event: etcan

virtual procedure evcan;

The key for cancel current operation was sent from the keyboard. This indicates the operation

in progress should be canceled.

Event: etstop

virtual procedure evstop;

The key for stop current operation was sent from the keyboard. This indicates the operation in

progress should be stopped.

Event: etcont

virtual procedure evcont;

The key for continue current operation was sent from the keyboard. This indicates the

operation in progress should be continued if stopped previously.

Event: etprint

virtual procedure evprint;

The key for print current document was sent from the keyboard. This indicates the current

document should be printed in entirety.

Event: etprintb

virtual procedure evprintb;

The key for print current block was sent from the keyboard. This indicates the current selected

bock, if it exists, should be printed.

Event: etprints

virtual procedure evprints;

The key for print current screen was sent from the keyboard. This indicates the current screen

should be printed.

March 6,

2011
THE LANGUAGE PASCALINE

252

Event: etmenu

virtual procedure evmenu;

The key for display menu was sent from the keyboard. This indicates the menu, if any, should

be displayed.

Event: etterm

virtual procedure evterm;

The key for terminate program was sent from the keyboard. This indicates the program should

be exited.

If this event is received, then the user ordered the exit. This means that automatic hold mode, if

enabled, will be bypassed, and the program closed immediately.

THE LANGUAGE PASCALINE
March 6,

2011

 253

K Annex K: Graphical Interface Library

The graphical library graphics extends the terminal model by adding graphical output procedures.

Since it is completely upward compatible with terminal, and standard ISO 7185 Pascal serial output

modes, any program from ISO 7185 Pascal, or terminal compliant Pascaline will run under

graphics. In the most advanced modes of graphics, ordinary Pascal write statements can still be

used to output text, so all of the output formatting procedures of ISO 7185 Pascal still work.

graphics will handle any graphics task. Besides drawing features, it supports double page animation.

Combined with the sound library sound, full graphical games are possible.

K.1 Terminal model

graphics emulates terminal by setting up a "character grid" across the pixel based screen. Each

"cell" on the grid matches the pixel height and width of a character. The character font is set to a fixed

font by default when graphics starts. This gives every character in the font the same height and

width. Finally, the text drawing mode is set such that both the foreground (the inside of the characters)

and the background (the space behind the characters) are drawn, overwriting any content of each

character cell as it is written.

This mode can be kept, while drawing other figures on the same text surface. Alternately, the cursor

can be set to any arbitrary pixel on the screen, and text written anywhere, down to the pixel. Also, the

font can be changed to a proportional one for a more pleasing look. Because automatic mode relies on

characters being neatly placed on the grid, it must be turned off before the cursor leaves the grid or

becomes a proportional font.

When auto is turned off, the grid is still useful. Although the character spacing varies, the line spacing

is still valid. This means that the grid is no longer useful in the x direction, but it is still useful in the y

direction. In addition, the origin in x is still valid. The result is that a series of lines printed with end-

of-lines will do the right thing with auto off, namely present a series of left justified lines at the x

origin (flush left) with the correct spacing.

K.2 Graphics Coordinates

The total size of the graphics screen is found by maxxg and maxyg, which return the maximum pixel

index in x and y. The pixel coordinates on the screen are from 1,1 to maxxg(f), maxyg(f). The cursor

can be set to any pixel position by cursorg(f, x, y). The current location of the cursor in pixel terms

is found by curxg and curyg.

K.3 Character Drawing

There can be any number of fonts available on the system, including both fixed space fonts, and

proportional fonts that vary in the width of characters. The number of fonts in the system can be found

with the font function. Fonts are chosen by logical number with font(f, c), where c is the font code, 1

to font. There are two methods to determine what font is assigned to a particular font code. The first is

the standard font codes, the second is the font name system. Standard fonts are numbers for commonly

used fonts in the system. These are commonly available fonts the program may need.

Font 1: Terminal Font

March 6,

2011
THE LANGUAGE PASCALINE

254

This is the default font set up by graphics when it starts. It's a fixed font. It also cannot be

superscripted, subscripted, bold or italic, because these modes change the size of the font.

Font 2: Book Font

This is a serif font, and is good for general purpose text such as what a paragraph in a book is

written in. This is the most common proportional font.

Font 3: Sign Font

This is a no serif font (sans serif), and is best for headings, titles and similar uses, as in road

signs and other signs. It's a proportional font.

Font 4: Technical Font

The technical font is a fixed font that is guaranteed to be able to scale to any arbitrary size.

This font is used to label drawings and engineering documents. Before the technology existed

to create arbitrary fonts in any point size, the technical font was done with stroked vector

graphics. Now, it is more likely to be equivalent to the sign font.

Beyond the standard fonts, the name of an installed font can be found by fontnam(f, fc, fns), where

fc is the font code, 1 to font, and fns returns the descriptive string for the font, such as "Helvetica".

The application should use the standard fonts by default, then present the system fonts, by name to the

user, and let the user choose one of them.

The size of each character is set by fontsiz(f, n), where n is the height of the font in pixels. The

reason character sizes are set by their height is because proportional fonts vary in the width of the

character. The height never varies. The current height of the font is found by chrsizy. Its width is

found with chrsizx. When a proportional font is active, chrsizx returns the width of a space in that

font, which is always as wide or wider than the widest character in that font.

Besides the basic font, extra space can be added between lines (known as "leading" in typography, for

the lead strips used between type lines) with chrspcy(f, n). n is the number of pixels of extra space to

add between lines. Extra space between characters is added with chrspcx(f, n), where n is the

number of pixels of extra space to add between characters.

The graphical cursor is placed at the upper left of the character box for the next character to be drawn.

If it is needed to know exactly where the character will rest if drawn on a line. The offset from the top

of the character box to the baseline of the text is found with the function baseline.

In typography, fonts and characters are measured by points, of which there are 28.35 points per

centimeter. Point measurement implies that the exact size of objects drawn on the screen is known.

This can be determined by the functions dpmx and dpmy, which return the "dots per meter" or pixels

in one meter for both x and y. The reason it can be two different measures for the two different axes is

that the display may not have square pixels or a 1:1 aspect ratio.

To find a given point size in terms of the height needed for the character, it is found by:

dpmy/2835*point size

The screen aspect ratio can also be found from these calls, it is:

THE LANGUAGE PASCALINE
March 6,

2011

 255

dpmx/dpmy

K.4 String Sizes and Kerning

When writing text to the screen in proportional font, it is often needed to know exactly how much

space the string will take up on the screen, down to the pixel. This amount of space can change not

only because of the variable width of proportional fonts, but also because of an effect called "kerning".

When a string of characters is draw together, the system can apply "kerning" to characters in the string.

Kerning means to fit the individual letters together, like puzzle pieces, to come up with a tighter

spacing than is normally possible. For example, "A" and "V" together as "AV" can typically be kerned

together to take less space because they can overlap. To find the exact number of pixels in x that a

string will occupy, the function strsiz(f, s) is used, where s is the string. The size of the string in y

does not change, and can be found with chrsizy. To find the exact position, in pixels offset from the

beginning of the string in x, of a given character, use chrpos(f, s, n), where s is the string, and n is

the index of the character to find the x offset of.

K.5 Justification

Justification is the spreading of spacing through a string of characters to fit a given space. If the string

will fit into the space is found with strsiz(f, s), and checking if the resulting pixels required are less

than or equal to the space they will occupy as justified. The character string is written in justified mode

with writejust(f, s, n), where s is the string to write, and n is the number of pixels to fit it in. If the

number of pixels allowed for is not enough, the string will be larger than the requested number. The

offset, in x, of a given justified character, is found with justpos(f, s, p, n), where s is the string, p is

the offset of the character you are interested in, and n is the total number of pixels to fit the string in,

as in writejust.

K.6 Effects

graphics expands the effects in terminal. For smaller character baselines, condensed(f, b), is

used. For larger character baselines, extended(f, b) is used.

In addition to normal bold, there are also light(f, b), xlight(f, b), and xbold(f, b) effects. For lighter

than normal, extra light, and extra bold modes.

Characters will have an embossed look with hollow(f, b) and raised(f, b). Hollow makes the

character look sunken, and raised makes it look as if coming off the page.

K.7 Tabs

graphics extends the character level of tabbing in terminal with procedures that can set tabs on an

individual pixel. settabg(f, x) sets a tab at the pixel x. restabg(f, x) resets the tab at pixel x. The

terminal procedure clrtab(f) clears all tabs, including pixel level tabs.

K.8 Colors

The simple eight colors from terminal are still available, with the addition of two new calls that allow

access to the full range of colors an advanced graphic system provides. fcolorg(f, r, g, b) sets the

foreground color from values of red r, green g, and blue b. Similarly, bcolorg(f, r, g, b) sets the

background color from rgb values. The values of the colors are ratioed. This means that instead of an

absolute number, the possible colors are ratioed from 0 to maxint, where 0 is dark, and maxint is

saturated color. Color ratios allow the true color range implemented by the system to be hidden.

